Discrete Mathematics

MTH 288-001N

Course Outline & Homework

Annandale Campus

Northern Virginia Community College

Dr. Don Goral

 

Course Description: Presents topics in sets, counting, graphs, logic, proofs, functions, relations, mathematical induction, Boolean Algebra, and recurrence relations.

The page numbers will be given in the form 3 (8),

where the first number is what is entered for digital navigation

and the second number is the printed page number.

 There are nine major topics in the course. Thus, for a 16 week course, with 30 class meetings, we should spend about 3 class meetings per major topic.

 General introduction (no exercises)

Kwong

 1 An Introduction

1.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 (1)

1.2 Suggestions to Students . . . . . . . . . . . . . . . . . . . . . . . . . . 11 (2)

1.3 How to Read and Write Mathematics . . . . . . . . . . . . . . . .  12 (3)

 

 Logic – Propositional Calculus

 Kwong

2.1 Propositions

            Page 22 (13):  1, 3, 7

2.2 Conjunctions and Disjunctions

            Page 22 (16): 1, 3, 5, 7

2.3 Implications

            Page 32 (23): 1, 3, 5, 7, 9

2.4 Biconditional

            Page 36 (27): 1, 3, 5, 7

2.5 Logical Equivalences

            Page 44 (35): 1, 3, 5, 7,11

 Lipschutz

4.1 Introduction

4.2 Propositions and Compound

      Statements

            Page 86: 4.20, 4.21, 4.22

4.9 Arguments

            Page 86: 4.23

Levin

3.1 Propositional Logic

      Truth Tables

      Deductions

            Page 147 (138): 1, 7

_________________________________________

 Logic - Predicate Calculus

Kwong

2.6 Logical Quantifiers

            Page 50 (41): 1, 3, 5

Levin

0.2  Predicates and Quantifiers   

       Page 38 (22): 16, 18

            

Lipschutz

1.3 Venn Diagrams

            Page 19: 1.34 b, 1.34c, 1.35a, 1.36

__________________________________________________

Logic – Proof

Doer

3.5 Mathematical Systems and Proofs

            Page 71 (57): 1, 3a, 5a

3.6 Propositions over a Universe

            Page 74 (60): 1

3.7 Mathematical Induction

            Page 80 (66): 1

3.9 A Review of Methods of Proof

            Page 88 (74): 1

 

Kwong

1.4 Proving Identities

            Page 17 (8): 1

3.1 An Introduction to Proof Techniques

            Page 55 (46): 3, 5

3.2 Direct Proofs

            Page 60 (51): 1, 3

3.3 Indirect Proofs

            Page 66 (57): 1, 3, 9

3.4 Mathematical Induction: An Introduction

            Page 74 (65):  1, 5

3.5 More on Mathematical Induction 3.6 Mathematical Induction: The Strong Form

            Page 81 (72): 1, 3, 9

Levin

3.2 Proofs 

            Page 239 (233): 1, 7

_________________________________________________

 Set Theory

Doer

1.1 Set Notation and Relations

            Page 17 (3): 1, 3, 5

1.2 Basic Set Operations

            Page 23 (9): 1a, 1g, 1e, 3c, 3f

1.3 Cartesian Products and Power Sets

            Page 26 (12): 1a, 1b, 1h, 3, 9

4.1 Methods of Proof for Sets

            Page 93 (79): 1a, 1d, 3c

4.2 Laws of Set Theory

            Page 96 (82): 1, 3c

Kwong

4.1 An Introduction

            Page 97 (88): 3a, 3b, 7a, 7b, 7c, 7d, 13a, 13b

4.2 Subsets and Power Sets

            Page 105 (96): 3, 5, 9

4.3 Unions and Intersections

            Page 111 (102):  1, 3

4.4 Cartesian Products

            Page 117 (108):  1a, 3

 

Functions and Relations

Kwong

 6.1 Functions: An Introduction

            Page 168 (159): 2, 3 

6.2 Definition of Functions

            Page 173 (164): 1,3

6.3 One-to-One Functions

            Page 179 (170): 1, 3, 5

6.4 Onto Functions

            Page 184 (175): 1, 3, 7

 

7.1 Definition of Relations

            Page 209 (200): 1, 2, 9

7.2 Properties of Relations

            Page 216 (207): 1, 7, 9

7.3 Equivalence Relations

            Page 224 (215): 1, 3, 5

7.4 Partial and Total Ordering

            Page 227 (218): 1, 3, 7

 

Counting Theory

Kwong

 8.1 What is Combinatorics?

8.2 Addition and Multiplication Principles

            Page 237 (228): 1, 3, 5, 7

8.3 Permutations

            Page 243 (234): 1, 3, 7

8.4 Combinations

            Page 251 (242): 1, 3,7, 11

8.5 The Binomial Theorem

            Page 258 (249): 1a, 3a, 7

 Levin

1.4 Combinatorial Proofs

            Page 115 (99): 1, 3, 9

 Lipschutz

5.6 Pigeonhole Principle      

Page 105: 5.69, 5.71

 

 Graph Theory

Doer

9.1 Graphs - General Introduction

9.4.1 Eulerian Graphs

            Page 228 (214): 5, 6, 8

10.1 What Is a Tree?

            Page 256 (242): 1, 3, 5a

10.2 Spanning Trees

            Page 261 (247): 1, 3, 4

 

Levin

4 Graph Theory

   4.1 Basics

            Page 185 (176): 5, 7a

 

Lipschutz

8.2 Graphs and Multigraphs

8.3 Subgraphs, Isomorphic and Homeomorphic Graphs

8.4 Paths, Connectivity

8.5 Traversable and Eulerian Graphs, Bridges of Königsberg

8.8 Tree Graphs

            Page 191: 8.34a, 8.34b, 8.34c, 8.35a, 8.35b, 8.35c, 8.39, 8.42

 _________________________________________________

 Boolean Algebra

Doer

13.1 Posets Revisited

            Page 352 (338): 3 (for graphs a, b, c), 5

13.2 Lattices

            Page 355 (341): 1, 6

13.3 Boolean Algebras

            Page 358 (344): 1, 4

 Lipschutz

14.2 Ordered Sets

14.8 Lattices

14.9 Bounded Lattices

14.10 Distributive Lattices

14.11 Complements, Complemented Lattices

Page 360: 14.31, 14.33, 14.39

 

15.1 Introduction

15.2 Basic Definitions

15.5 Boolean Algebras as Lattices

            Page 403: 15.47

___________________________________________________________________________

 Recurrence Relations

Doer

8.2 Sequences

            Page 165 (151): 1, 2a

8.3 Recurrence Relations

            Page 175 (161): 1, 3, 13a, 15

 Levin

2 Sequences

   2.1 Describing Sequences

            Page 160 (144): 1a, 1b, 3, 7

   2.2 Arithmetic and Geometric 

         Sequences

            Page 172 (156): 1, 7

   2.4 Solving Recurrence Relations

         The Characteristic Root

         Technique

            Page 191 (175): 1, 3, 5

 Lipschutz

3.6 Recursively Defined Functions

6.6 Recurrence Relations

6.7 Linear Recurrence Relations with Constant Coefficients

6.8 Solving Second-Order Homogeneous Recurrence Relations

            Page 121: 6.31a, 6.33a, 6.34a


Page revised 04/24/20

Contact Dr. Goral at dgoral@nvcc.edu




 

 

Contact Dr. Goral
MTH 288 Home Page
Dr. Goral Home Page