I do not collect homework,
but you must attempt each assigned problem if you hope to pass
this course. The homework exercises provide the foundation for
quizzes and exams.
Textbook
Linear Algebra with Applications
W. Keith Nicholson
Lyrix Version 2021-A
Here is a link to the
free PDF download.
Nicholson-OpenLAWA-2021A.pdf
(lyryx.com)
The first page number
is the digital page for navigating the PDF.
The (second page number) is the printed page number.
1 Systems of Linear
Equations
1.1 Solutions and Elementary Operations
page 32 (8): 1a, 2a, 5, 7a, 9a
1.2 Gaussian Elimination
page 41(17): 1, 3a, 4b, 5a, 11a
1.3 Homogeneous Equations
page 49 (25): 1, 3a, 5a, 7a
1.4 An Application to Network Flow
page 52 (28): 1a
1.5 An Application to Electrical Networks
page 54 (30): 1
1.6 An Application to Chemical Reactions
page 56 (32): 1
2 Matrix Algebra
2.1 Matrix Addition, Scalar Multiplication, and Transposition
page 68 (44): 1a, 2a, 2e, 4a, 6a, 10
2.2 Matrix-Vector Multiplication
page 86 (62): 1a, 2a, 3a, 5a, 6, 10a, 10c
2.3 Matrix Multiplication (omit blocks & directed graphs)
page 99 (75): 1a, 1f, 3a, 4a, 6a, 30a
2.4 Matrix Inverses
page 114 (90): 1a, 1c, 2a, 2c, 3a, 5a, 10a
2.6 Linear Transformations
page 138 (114): 1a, 3c, 5, 14, 22a
3 Determinants and
Diagonalization
3.1 The Cofactor Expansion
page 177 (153): 1a, 1i, 5a, 9a, 9h, 26
3.3 Diagonalization and Eigenvalues
page 211 (187): 1a, 1c, 2a, 7, 9a, 13
5 Vector
Space
5.1 Subspaces and Spanning
page 291 (267): 1a, 1b, 2a, 7, 17a
5.2 Independence and Dimension
page 302 (278): 3a, 4a, 6b, 7d, 16
5.3 Orthogonality
page 310 (286): 1a, 3a, 6a, 6c, 8a, 10
5.4 Rank of a Matrix
page 318 (294): 1b, 2a, 8a, 9
6 Vector Spaces
6.1 Examples and Basic Properties
page 358 (334): 1a, 1b, 2f, 6d, 8
6.2 Subspaces and Spanning Sets
page 365 (341): 1b, 1f, 2b, 6a, 8b, 8d, 14
6.3 Linear Independence and Dimension
page 373 (349): 1a, 1c, 3, 5c, 9, 12b, 13
6.4 Finite Dimensional Spaces
page 382 (358): 1a, 2b, 4a, 5a, 10
7 Linear
Transformations
7.1 Examples and Elementary Properties
page 400 (376): 1a, 1e, 2c, 3a, 4a, 19
7.2 Kernel and Image of a Linear Transformation
page 409 (385): 1a, 2b, 3, 7
8 Orthogonality
8.6 The Singular Value Decomposition
8.6.1 Singular Value Decompositions
page 477 (453): 5, 9b, 10
9 Change of Basis
9.1 The Matrix of a Linear Transformation
page 525 (501): 1b, 1d, 2b, 3b, 4b, 7b
10 Inner Product
Spaces
10.1 Inner Products and Norms
page 560 (535): 1a, 1d, 3a, 4a, 9
Page revised 06/22/21
Contact Dr. Goral at dgoral@nvcc.edu