1-1 Applied Calculus Solutions

Thursday, May 12, 2016 2:18 PM

Page 15

1.1 Exercises

- 1. The amount of garbage, G, produced by a city with population p is given by G = f(p). G is measured in tons per week, and p is measured in thousands of people.
 - a. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this information in terms of the function f.
 - b. Explain the meaning of the statement f(5) = 2.
- (1a) f(40) = 13
- (1b) When the town of Tola has a population of 5,000, it produces 2 tons of garbage.
 - 2. The number of cubic yards of dirt, *D*, needed to cover a garden with area *a* square feet is given by D = g(a).
 - a. A garden with area 5000 ft² requires 50 cubic yards of dirt. Express this information in terms of the function g.
 - b. Explain the meaning of the statement g(100) = 1.
- (2a) g(5000) = 50
- (2b) If the garden has an area of 100 square feet, then 1 cubic yard of dirt is needed to cover it.

The graphs of a, b, d, and e represent y as a function of x. The graphs of c and f fail the vertical line test.

4. Select all of the following graphs which represent y as a function of x.

The graphs of a, b, and f represent y as a function of x. The graphs of c, d, and f **fail** the vertical line test.

0,

5. Select all of the following tables which represent y as a function of x.

a.	x	5	10	15	b.	x	5	10	15	c.	x	5	10	10
	y	3	8	14		y	3	8	8		y	3	8	14

Tables a and b represent y as a function of x, because for each value of x, there is a unique corresponding value of y.

Table c does **not** represent y as a function of x, because when x = 10, there are two distinct

corresponding values of y: y = 8 and y = 14.

6. Select all of the following tables which represent y as a function of x.

a.	x	2	6	13	b.	x	2	6	6	c.	x	2	6	13
	y	3	10	10		y	3	10	14		y	3	10	14

Tables a and c represent y as a function of x, because for each value of x, there is a unique corresponding value of y.

Table b does **not** represent y as a function of x, because when x = 6, there are two distinct

corresponding values of y: y = 10 and y = 14.

8. Given the function f(x) graphed here.

a. Evaluate f(4)

(8a) f(4) = 2

(8b)
$$f(x) = 4 \Rightarrow x = -3$$

Draw the horizontal line y = 4 and find its intersection with the curve f(x).

9. Based on the table below,

a. Evalu	ate <i>J</i>	r(3)	\sim	b. Solve $f(x)=1$								
x	0	1	Z	3	4	5	6	7	8	9		
$f(\mathbf{x})$	74	28	1	53	56	3	36	45	14	47		

- (9a) f(3) = 53
- (9b) $f(x) = 1 \Rightarrow x = 2$
 - 10. Based on the table below, a. Evaluate f(8) b. Solve f(x)=7

10. Based on the table below,

a.	Evalu	ate j	f(8)		b. Solve $f(x)=7$							
x		0	1	2	3	4	5	6	7	8	9	
	$f(\mathbf{x})$	62	8	7	38	86	73	70	39	75	34	

(10a) f(8) = 75

(10b) $f(x) = 7 \Rightarrow x = 2$

For each of the following functions, evaluate: f(-2), f(-1), f(0), f(1), and f(2)

11.
$$f(x) = 4 - 2x$$

 $f(-2) = 4 - 2(-2) = 4 + 4 = 8$
 $f(-1) = 4 - 2(-1) = 4 + 2 = 6$
 $f(0) = 4 - 2(0) = 4 - 0 = 4$
 $f(1) = 4 - 2(1) = 4 - 2 = 2$
 $f(2) = 4 - 2(2) = 4 - 4 = 0$

12.
$$f(x) = 8 - 3x$$

 $f(-2) = 8 - 3(-2) = 8 + 6 = 14$
 $f(-1) = 8 - 3(-1) = 8 + 3 = 11$
 $f(0) = 8 - 3(0) = 8 - 0 = 8$
 $f(1) = 8 - 3(1) = 8 - 3 = 5$
 $f(2) = 8 - 3(2) = 8 - 6 = 2$

13. $f(x) = 8x^2 - 7x + 3$

 $f(-2) = 8(-2)^2 - 7(-2) + 3 = 32 + 14 + 3 = 49$

$$f(-1) = 8(-1)^{2} - 7(-1) + 3 = 8 + 7 + 3 = 18$$

$$f(0) = 8(0)^{2} - 7(0) + 3 = 0 - 0 + 3 = 3$$

$$f(1) = 8(1)^{2} - 7(1) + 3 = 8 - 7 + 3 = 4$$

$$f(2) = 8(2)^{2} - 7(2) + 3 = 32 - 14 + 3 = 22$$

14.
$$f(x) = 6x^2 - 7x + 4$$

 $f(-2) = 6(-2)^2 - 7(-2) + 4 = 24 + 14 + 4 = 42$
 $f(-1) = 6(-1)^2 - 7(-1) + 4 = 6 + 7 + 4 = 17$
 $f(0) = 6(0)^2 - 7(0) + 4 = 0 - 0 + 4 = 4$
 $f(1) = 6(1)^2 - 7(1) + 4 = 6 - 7 + 4 = 3$
 $f(2) = 6(2)^2 - 7(2) + 4 = 24 - 14 + 4 = 14$

15.
$$f(x) = 3 + \sqrt{x+3}$$

 $f(-2) = 3 + \sqrt{-2+3} = 3 + \sqrt{1} = 3 + 1 = 4$
 $f(-1) = 3 + \sqrt{-1+3} = 3 + \sqrt{2}$
 $f(0) = 3 + \sqrt{0+3} = 3 + \sqrt{3}$
 $f(1) = 3 + \sqrt{1+3} = 3 + \sqrt{4} = 3 + 2 = 5$
 $f(2) = 3 + \sqrt{2+3} = 3 + \sqrt{5}$

16.
$$f(x) = 4 - \sqrt[3]{x - 2}$$
$$f(-2) = 4 - \sqrt[3]{-2 - 2} = 4 - \sqrt[3]{-4} = 4 + \sqrt[3]{4}$$
$$f(-1) = 4 - \sqrt[3]{-1 - 2} = 4 - \sqrt[3]{-3} = 4 + \sqrt[3]{3}$$
$$f(0) = 4 - \sqrt[3]{0 - 2} = 4 - \sqrt[3]{-2} = 4 + \sqrt[3]{2}$$
$$f(1) = 4 - \sqrt[3]{1 - 2} = 4 - \sqrt[3]{-1} = 4 + 1 = 5$$
$$f(2) = 4 - \sqrt[3]{2 - 2} = 4 - \sqrt[3]{0} = 4$$

17.
$$f(x) = \frac{x-3}{x+1}$$

 $f(-2) = \frac{-2-3}{-2+1} = \frac{-5}{-1} = 5$
 $f(-1) = \frac{-1-3}{-1+1} = \frac{-4}{0}$ not defined
 $f(0) = \frac{0-3}{0+1} = \frac{-3}{1} = -3$
 $f(1) = \frac{1-3}{1+1} = \frac{-2}{2} = -1$
 $f(2) = \frac{2-3}{2+1} = \frac{-1}{3} = -\frac{1}{3}$
18. $f(x) = \frac{x-2}{x+2}$
 $f(-2) = \frac{-2-2}{-2+2} = \frac{-4}{0}$ not defined
 $f(-1) = \frac{-1-2}{-1+2} = \frac{-3}{1} = -3$
 $f(0) = \frac{0-2}{0+2} = \frac{-2}{2} = -1$
 $f(1) = \frac{1-2}{1+2} = \frac{-1}{3} = -\frac{1}{3}$
 $f(2) = \frac{2-2}{2+2} = \frac{0}{4} = 0$
19. Let $f(t) = 3t + 5$
a. Evaluate $f(0)$ b. Solution

b. Solve f(t) = 0

(19a) f(0) = (3)(0) + 5 = 0 + 5 = 5

Casio ClassPad 400 trace

(19b)
$$3t + 5 = 0$$
$$\Leftrightarrow 3t = -5$$
$$\Leftrightarrow t = \frac{-5}{3}$$

Casio ClassPad 400 root

20. Let
$$g(p) = 6 - 2p$$

a. Evaluate $g(0)$ b. Solve $g(p) = 0$

(20a) g(0) = 6 - (2)(0) = 6 - 0 = 6

Casio ClassPad 400 trace

ClassPad 400 root

21. Using the graph shown,

- a. Evaluate f(c)
- b. Solve f(x) = p
- c. What are the coordinates of points L and K?

- 21. Using the graph shown,
 - a. Evaluate f(c)
 - b. Solve f(x) = p
 - c. What are the coordinates of points *L* and *K*?

- (21a) f(c) = t
- (21b) $f(x) = p \Rightarrow x = a$
- (21c) coordinates of L = (c, t)

coordinates of K = (a, p)

22. Match each graph with its equation.

Domain =
$$\{x | 2 < x \le 8\}$$

Range = $\{y | 6 \le y < 8\}$

Domain = $\{x | 4 \le x < 8\}$ Range = $\{y | 2 < y \le 8\}$

Find the domain of each function

$$25. f(x) = 3\sqrt{x-2}$$

domain of
$$f(x) = \{x | x - 2 \ge 0\} = \{x | x \ge 2\}$$

26.
$$f(x) = 5\sqrt{x+3}$$

domain of $f(x) = \{x | x + 3 \ge 0\} = \{x | x \ge -3\}$

$$27. \ f(x) = \frac{9}{x-6}$$

domain of $f(x) = \{x | x - 6 \neq 0\} = \{x | x \neq 6\}$

$$28. f(x) = \frac{6}{x-8}$$

domain of $f(x) = \{x | x - 8 \neq 0\} = \{x | x \neq 8\}$

$$29. f(x) = \frac{3x+1}{4x+2}$$

domain of $f(x) = \{x | 4x + 2 \neq 0\} = \{x | x \neq -\frac{1}{2}\}$

$$30. f(x) = \frac{5x+3}{4x-1}$$

domain of $f(x) = \{x | 4x - 1 \neq 0\} = \{x | x \neq \frac{1}{4}\}$

These solutions were created by Donald R. Goral from exercises in *Applied Calculus, Edition 1* by Shana Calaway, Dale Hoffman, David Lippman

Copyright © 2014 Shana Calaway, Dale Hoffman, David Lippman This text is licensed under a Creative Commons Attribution 3.0 United States License.