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3.2 The Factor Theorem and the Remainder Theorem
3.2.1 Exercises
page 265: 1, 3,9, 21, 35,42

3.2

Memorize

Theorem 3.7. Suppose f is a polynomial of degree n > 1. Then f has at most n real zeros,
counting multiplicities.

Memorize

Definition 1.9. The zeros of a function f are the solutions to the equation f(z) = 0. In other
words, z is a zero of f if and only if (x,0) is an z-intercept of the graph of y = f(z).

Definition 3.3. Suppose f is a polynomial function and m is a natural number. If (z — ¢)™ is
a factor of f(z) but (z — ¢)™*! is not, then we say = = c is a zero of multiplicity m.
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Memorize

Connections Between Zeros, Factors and Graphs of Polynomial Functions

Suppose p is a polynomial function of degree n > 1. The following statements are equivalent:

e The real number c is a zero of p
* p(c)=0
e z = c is a solution to the polynomial equation p(z) = 0

e (z —c¢) is a factor of p(x)

e The point (c,0) is an z-intercept of the graph of y = p(x)

3.2:

In Exercises 31 - 40, you are given a polynomial and one of its zeros. Use the techniques in this
section to find the rest of the real zeros and factor the polynomial.

32. 23 — 2422 + 192z — 512, ¢ =38
Lt ply) = A’ by IV - S

813-24*872+192%8-512=0
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Synthetic division: only applies when divisor is a
linear function

32. 2% — 2422 + 1922 — 512. ¢ =8



linear tunction

32. 23 — 2422 4+ 1922 — 512, ¢ =8
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3.1

In Exercises 41 - 45, create a polynomial p which has the desired characteristics. You may leave
the polynomial in factored form.

43. e The solutions to p(z) =0 are z = £3 and x = 6

—

e The leading term of p(z) is 7x*
e The point (—3,0) is a locgl minimum on the graph of y = p(x).
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45. e p is degree 4.
e as x — 00, p(z) = —o0
e p has exactly three z-intercepts: (—6,0), (1,0) and (117,0)
e The graph of y = p(x) crosses through the z-axis at (1,0).
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Finish at home



