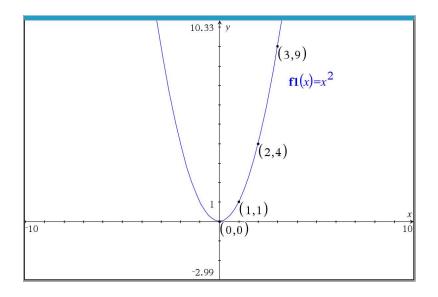
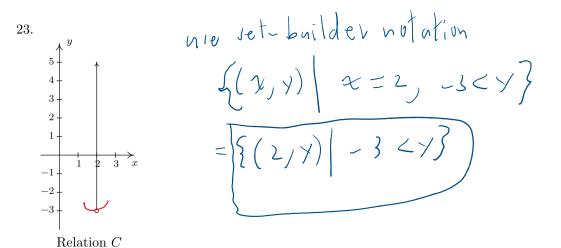
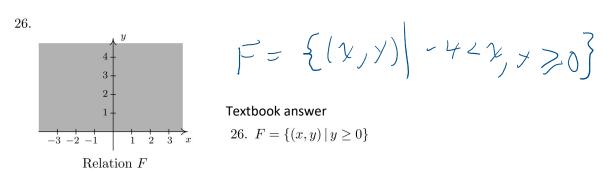
1.2 Relations 1.2.2 Exercises page 29: 1, 3, 7, 18, 21, 22, 27, 37, 41, 50


1.2

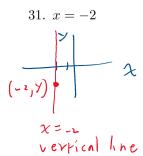
1.2.2 Exercises

In Exercises 1 - 20, graph the given relation.


2.
$$\{(-2,0), (-1,1), (-1,-1), (0,2), (0,-2), (1,3), (1,-3)\} = \{(1,1), (-1,-1), (0,2), (0,-2), (1,3), (1,-3)\} = \{(1,1), (0,1), ($$


6. {
$$(\sqrt{j}, j) | j = 0, 1, 4, 9$$
} $= \begin{cases} (J \circ j \circ) \\ (\sqrt{j}, j) \\ (\sqrt$

In Exercises 21 - 30, describe the given relation using either the roster or set-builder method.

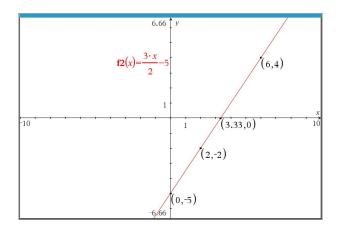

Note: Dr. Goral finds this graph a bit unclear.

MDE 161-C06N Page 2

1.2:

In Exercises 31 - 36, graph the given line.

1.2


For each equation given in Exercises 41 - 52:

- Find the x- and y-intercept(s) of the graph, if any exist.
- Follow the procedure in Example 1.2.3 to create a table of sample points on the graph of the equation.
- Plot the sample points and create a rough sketch of the graph of the equation.
- Test for symmetry. If the equation appears to fail any of the symmetry tests, find a point on the graph of the equation whose reflection fails to be on the graph as was done at the end of Example 1.2.4

Example 1.2.4 48. $3x - 2y = 10$ $3 \chi = 2 \gamma + 10$ $3\chi - 10 = 2\gamma$ $2\gamma = 3\chi - 10$	Good notation bad notation $\frac{3\chi}{2} = (\frac{3}{2})\chi = \frac{3}{2}\chi$
$x = \frac{3x}{2} - 5$ x = -in Fevce pl Let $y = 0$, solve for x	y-intercept Let $\chi = 0$, solve for ,
$3 = -2(0) = 10$ $3 = \frac{10}{2}$ $x = \frac{10}{3}$ or the point $\left(\frac{10}{3}\right)$	3/6) - 2-y = 10 -2-y = /0 (y = -5) or the point (0, -5)
$\begin{array}{c} x \\ y \\ 0 \\ -5 \\ 2 \\ -2 \\ 10 \\ 0 \\ 6 \\ 4 \\ 6 \\ 4 \end{array}$	(6, 4) $(2, -2)$ \times (-5)

I graphed the function $y = \frac{3x}{2} - 5$. Then, I used Trace with x = 0,2, 10/3, 6 to confirm that the

plotted points satisfy the given equation.

By inspection of the graph, there is no symmetry.

48. 3x - 2y = 10

Testing the Graph of an Equation for Symmetry	
To test the graph of an equation for symmetry	
• about the y-axis $-$ substitute $(-x, y)$ into the equation and simplify. If the resul equivalent to the original equation, the graph is symmetric about the y-axis.	t is
• about the x-axis – substitute $(x, -y)$ into the equation and simplify. If the resul equivalent to the original equation, the graph is symmetric about the x-axis.	t is
• about the origin - substitute $(-x, -y)$ into the equation and simplify. If the resul equivalent to the original equation, the graph is symmetric about the origin.	t is
y-axis symmetry - No	
3(-x)-2y=10 -32-2y=10 Not exhiver	
sc-axis symmetry - Nu	
$3\chi - 2(-\gamma) = 10$	
32+27=10 not-equivalent	
orlsin symmetry -No	

$$3(-7) - 2(-7) = 10$$

- $37 + 27 = 10$ not equivalent