

1.3 The Derivatives: Infinitesimal Approach

page 30: 1, 5, 6, 13

1.4 Derivatives of Sums, Products and Quotients

page 36: 1, 5, 11, 13

1.5 The Chain Rule

page 40: 1, 5, 9, 17

Your Name MTH 263 quiz 1

Open homework notebook, closed everything else.

Calculator OK.

1.3: 1

AFor Exercises 1-9, let dx be an infinitesimal and prove the given formula.

1. $(dx + 1)^2 = 2dx + 1$

$$\begin{aligned}
 & (dx)^2 + 2dx + 1 \\
 & = 0 + 2dx + 1 \\
 & = 2dx + 1 \quad \checkmark
 \end{aligned}$$

1.4: 1

A

For Exercises 1-14, use the rules from this section to find the derivative of the given function.

1. $f(x) = x^2 - x - 1$

$$\begin{aligned}
 f'(x) &= 2x - 1 \\
 \frac{dt}{dx} &= \frac{d}{dx}(x^2 - x - 1) \\
 &= \frac{d}{dx}(x^2) + \frac{d}{dx}(-x) + \frac{d}{dx}(-1) \quad \text{sum rule} \\
 &= 2x - \frac{d}{dx}(x) + 0 \\
 &\quad \text{power rule} \quad \text{constant} \\
 &\quad \text{multiple rule} \\
 &= \boxed{2x - 1}
 \end{aligned}$$

1.4 memorize

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Memorize

For $n \geq 1$ differentiable functions f_1, \dots, f_n and constants c_1, \dots, c_n :

$$\frac{d}{dx}(c_1 f_1 + \dots + c_n f_n) = c_1 \frac{df_1}{dx} + \dots + c_n \frac{df_n}{dx} \quad (1.10)$$

Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$ for any integer n

Let $n = 0$

$$\frac{d}{dx}(x^0) = \frac{d}{dx}(1) = 0$$

$x \neq 0$

$$0 \cdot x^{0-1} = 0 \quad \checkmark$$

True for $n = 0$

Let $n = 1$

$$\frac{d}{dx}(x^1) = \frac{d}{dx}(x) = 1$$

$$1 \cdot x^{1-1} = 1 \cdot x^0 = 1 \quad \checkmark$$

Let $n = 2$

$$\frac{d}{dx}(x^2) = \frac{d}{dx}(x \cdot x)$$

$$= x \frac{dx}{dx} + x \frac{dx}{dx}$$

$$= x(1) + x(1)$$

$$= 2x$$

$$2x^{2-1} = 2x^1 = 2x$$

Supplied

Principle of Mathematical Induction

A statement $P(n)$ about integers $n \geq k$ is true for all $n \geq k$ if:

1. $P(k)$ is true.
2. If $P(n)$ is true for some integer $n \geq k$ then $P(n+1)$ is true.

In general, the derivative of a polynomial of degree $n \geq 0$ is given by:

For any constants a_0, \dots, a_n with $n \geq 0$:

In general, the derivative of a polynomial of degree $n \geq 0$ is given by:

For any constants a_0, \dots, a_n with $n \geq 0$:

$$\frac{d}{dx} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + 2 a_2 x + a_1$$

Differentiate term-by-term, using constant multiple rule and power rule

1.5

Memorize

Chain Rule: If f is a differentiable function of u , and u is a differentiable function of x , then f is a differentiable function of x , and its derivative with respect to x is:

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

Chain Rule: If g is a differentiable function of x , and f is a differentiable function on the range of g , then $f \circ g$ is a differentiable function of x , and its derivative with respect to x is:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

A

For Exercises 1-9, let dx be an infinitesimal and prove the given formula.

5. $\sin 2dx = 2dx$

$$\sin(2dx) = 2(\sin dx)(\cos dx)$$

$$\sin dx = dx$$

$$\cos dx = 1$$

$$\begin{aligned} &= (2dx)(1) \\ &= 2dx \end{aligned}$$

Memorize

$$\frac{d}{dx} (x^r) = r x^{r-1} \quad \text{for any rational number } r$$

Do you know the story about Gauss as a child?

being asked to sum up the first 100 counting numbers?

Absolutely, I love that story. So, Carl Friedrich Gauss, when he was just a kid, was given this problem by his teacher. The teacher thought it would keep the class busy for a while, you know, adding the numbers 1 through 100. But Gauss recognized a pattern, and he quickly realized he could pair the numbers—1 with 100, 2 with 99, and so on—so each pair summed to 101. He just multiplied and got the total super fast. Pretty clever for a kid, right? So hey, did you ever pull any smart tricks like that in school?

$$\begin{aligned} & \leftarrow 1 + 2 + 3 + \dots + 98 + 99 + 100 \\ & \rightarrow 100 + 99 + 98 + \dots + 3 + 2 + 1 \\ & \hline 2x = 101 + 101 + \dots + 101 \quad \text{100 terms} \end{aligned}$$
$$x = \frac{100(101)}{2} = 50(101) = 5050$$

$$\sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

$$\sum_{i=1}^n i = \frac{n(n+1)}{2} \quad \text{supplied}$$

Prove by math induction

basis step

let $n=1$ $\sum_{i=1}^1 i = \frac{1(1+1)}{2}$

$$\sum_{i=1}^1 i = \frac{1(1+1)}{2}$$

$$\text{let } n=1 \quad \sum_{i=1}^n i = \frac{1}{2} \cdot 1^2$$

$$1 = \frac{1(2)}{2}$$

$$1 = 1 \quad \checkmark$$

True for $n=1$

Inductive hypothesis

Assume $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ for any fixed integer $n \geq 1$

Prove $\sum_{i=1}^{n+1} i = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$

$$\begin{aligned} \sum_{i=1}^{n+1} i &= \left(\sum_{i=1}^n i \right) + (n+1) \\ &= \frac{n(n+1)}{2} + (n+1) \quad \text{Ind hyp.} \end{aligned}$$

$$\begin{aligned} &= (n+1) \left(\frac{n}{2} + 1 \right) \\ &= (n+1) \left(\frac{n}{2} + \frac{2}{2} \right) \\ &= \frac{(n+1)(n+2)}{2} \quad \checkmark \end{aligned}$$

1.5

For Exercises 1-18, find the derivative of the given function.

3. $f(x) = \sqrt{1 - 2x}$

$$dt - df = 1 \cdot \left(-\frac{1}{2} \cdot (1-2x)^{-\frac{1}{2}} \right) \cdot (-2)$$

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx} \quad f'(x) = f'(g(x)) \cdot g'(x)$$

$$f(x) = (1-2x)^{\frac{1}{2}}$$

$$f'(x) = \left(\frac{1}{2}\right) (1-2x)^{\frac{1}{2}-1} \frac{d}{dx}(-2x)$$

$$= \left(\frac{1}{2}\right) (1-2x)^{-\frac{1}{2}} (-2)$$

$$f'(x) = - (1-2x)^{-\frac{1}{2}}$$

$$f'(x) = - \frac{1}{\sqrt{1-2x}}$$

$$f(x) = \sqrt{1-2x} = (1-2x)^{\frac{1}{2}}$$

$$\text{Let } u = 1-2x$$

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

$$f(u) = u^{\frac{1}{2}}$$

$$f(u) = u^{\frac{1}{2}},$$

$$\frac{df}{du} = \left(\frac{1}{2}\right) u^{-\frac{1}{2}}$$

$$\frac{dw}{dx} = \frac{d}{dx}(1-2x) = -2$$

$$\frac{df}{dx} = \left(\frac{1}{2}\right) u^{-\frac{1}{2}} (-2)$$

$$= -u^{-\frac{1}{2}}$$

$$= \boxed{- (1-2x)^{-\frac{1}{2}}}$$

Find derivative

$$6. \quad f(x) = \frac{\sqrt{x} + 1}{\sqrt{x} - 1} = \frac{x^{\frac{1}{2}} + 1}{x^{\frac{1}{2}} - 1}$$

Quotient rule

$$f'(x) = \frac{(x^{\frac{1}{2}} - 1) \left(\left(\frac{1}{2}\right) x^{-\frac{1}{2}}\right) - (x^{\frac{1}{2}} + 1) \left(\left(\frac{1}{2}\right) x^{-\frac{1}{2}}\right)}{(x^{\frac{1}{2}} - 1)^2}$$

$$(x^{\frac{1}{2}} - 1)^2$$

$$\frac{x^{\frac{1}{2}} - 1 - x^{-\frac{1}{2}} - \frac{1}{2} - \frac{1}{2}x^{-\frac{1}{2}}}{x - 2x^{\frac{1}{2}} + 1}$$

$$f'(x) = \frac{-x^{-\frac{1}{2}}}{(x^{\frac{1}{2}} - 1)^2}$$

Gemini

$$f'(x) = \frac{-1}{\sqrt{x}(\sqrt{x} - 1)^2}$$