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1.2 The Derivative: Limit Approach
page 24: 1,3,5,7,9

1.3 The Derivatives: Infinitesimal Approach
page 30: 1,5, 6,13

1.4 Derivatives of Sums, Products and Quotients
page 36:1,5, 11, 13

1.3 All definitions and properties of infinitesimals will be
supplied.

Memorize

Notation for the derivative of y = f (x): The following are all equivalent:

d d . d
2 T T
dx dx

dx Dft=)

A number 6 is an infinitesimal if the conditions (a)-(d) hold:
@) 6#0

(b) if § > 0 then § is smaller than any positive real number
(e) if 6 <0 then § is larger than any negative real number

(d) 62 =0 (and hence all higher powers of §, such as 6% and 8%, are also 0)

Note: Any infinitesimal multiplied by a nonzero real number is also an infinitesimal, while
0 times an infinitesimal is 0.

Microstraightness Property: For the graph of a differentiable function, any part of the
curve with infinitesimal length is a straight line segment.

Let dx be an infinitesimal such that f(x + dx) is defined. Then dy = f(x + dx) — f(x) is also
an infinitesimal, and the derivative of y = f(x) at x is the ratio of dy to dx:

dy _ flx+dx) - f(x)

= 1.
dx dx (1.8)

Show that the derivative of y = f(x) = 2% is 2 = 2x.
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Example 1.4

Show that the derivative of y = f(x) = x? is % = 2%

Solution: For any real number x,

dy _ fle+de) = f@)

dx dx
_ (x +dx)? — x?
- dx
_)(Z+2xdx+(dx)2_x2/
) dx
2
= % since dx is an infinitesimal = (dx)? =0
_ 2xdf
a5
= 2x
2 C
7 s=BC =2dx
x [2N2 \9\'\5“}1')
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Figure 1.3.2 Circle O: BC =2sindx, /ZBOC =2/BAC M\”@)ﬁ

263-004N Page 2



6.66 | v
fZ(x)=x
fl(x)=sin( )
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We see from the graph that sin(x) = x for x
sufficiently close to zero.

Memorize

i(sin X) = cosx
dx B

%(cos x) = —sinx

_dF

J
\{ /’J/) — @ With infinitesimals, we can multiply both sides by dx.

df = f'(x)dx

df is called the differential of f.

1.2

For Exercises 1-9, let dx be an infinitesimal and prove the given formula.

3. dx+1)1=1-dx
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What approximation formula does this suggest?

1
—=1—x forxclose
1+x

to 0.

6166 | ¥V

f4(x)= 1=

0.1

1.41

3. de+1)1=1-dx
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Memorize
Rules for Derivatives: Suppose that f and g are differentiable functions of x. Then:
d _df dg
Sum Rule: a(f+g) = o + T
d df dg
Diff Rule: —(f-g) = — - =2
ifference Rule T (f-g) T o
) d af
Constant Multiple Rule: d—(c f)=c: Tr for any constant c
% X
d dg df
Product Rule: —(f-g) =f-— + g-—
roduct Rule dx(f 8 =f R A
df dg
d G 0y =
Quotient Rule: — (i) = M
dx \g g?

Sum Rule: (f+g)(x) = f'(x) + g'(x)
Difference Rule: (f-g)'(x) = f'(x) — g'(x)
Constant Multiple Rule: (cf)'(x) = c-f'(x) for any constant c
Product Rule: (f-g)(x) = f(x)-g'(x) + g(x)-f'(x)

g (g(x))?

Quotient Rule:

In words, the derivative of a sum is the sum of the derivatives.
The derivative of a difference is the difference of the derivatives.

The proof of the Sum Rule is straightforward. Since % and %g both exist then:

d (f+8)x+dx) — (f+g)x)  flx+dx) + glx+dx) — (f(x) + g(x))
—\fg) = =
dx dx dx
B flx+dx) — f(x) + glx+dx) — g(x) B flx+dx) — f(x) N glx+dx) — gx)
B dx B dx dx
_df, de
T odx * dx d

IIW;J( y)/ogWoV\c\/\
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