1.6 Higher Order Derivatives

page 45: 1, 3, 7, 9

2 Derivatives of Common Functions

2.1 Inverse Functions

page 50: 1, 3, 5

Exam 1		stem & leaf		
53.16667	mean			A-0
47	median	8	58	B-2
20.73979	st. dev	7	8	C-1
20	min	6	3	D-1
88	max	5	09	F- 8
12	count	4	24	
		3	379	
		2	0	

1.6

Memorize

Notation for the second derivative of y = f(x): The following are all equivalent:

$$f''(x)$$
 , $f^{(2)}(x)$, $\frac{d^2y}{dx^2}$, $\frac{d^2}{dx^2}(f(x))$, y'' , $y^{(2)}$, \ddot{y} , $\ddot{f}(x)$, $\frac{d^2f}{dx^2}$, $D^2f(x)$

Notation for the *n***-th derivative of** y = f(x)**:** The following are all equivalent:

$$f^{(n)}(x)$$
 , $\frac{d^n y}{dx^n}$, $\frac{d^n}{dx^n}(f(x))$, $y^{(n)}$, $\frac{d^n f}{dx^n}$, $D^n f(x)$

memorize

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^2}{dx^2} \left(\frac{dy}{dx} \right)$$

:

$$\frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1} y}{dx^{n-1}} \right) = \frac{d^{n-1}}{dx^{n-1}} \left(\frac{dy}{dx} \right)$$

Memorize

$$s(t)$$
 = position at time t

$$v(t)$$
 = velocity at time t
= $\frac{ds}{dt}$ = $s'(t)$ = $\dot{s}(t)$

$$a(t)$$
 = acceleration at time t

$$= \frac{dv}{dt} = v'(t) = \dot{v}(t)$$

$$= \frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d^2s}{dt^2} = s''(t) = \ddot{s}(t)$$

Supplied

$$\frac{d^n}{dx^n}(x^n) = n!$$
 for all integers $n \ge 0$

Supplied

$$\frac{d^{n+1}}{dx^{n+1}}\left(x^n\right) = \frac{d}{dx}\left(\frac{d^n}{dx^n}\left(x^n\right)\right) = \frac{d}{dx}(n!) = 0$$

The (n+1)-st derivative ("n plus first derivative") of a polynomial of degree n is 0: For any polynomial $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ of degree n, $\frac{d^{n+1}}{dx^{n+1}}(p(x)) = 0$.

Prove by math induction

$$\frac{d^n}{dx^n}(x^n) = n! \quad \text{for all integers } n \ge 0$$

basis step let
$$n = 0$$

$$\frac{d^{n}}{dx^{n}}(\chi^{n}) \stackrel{?}{=} 0!$$

$$\chi^{n} \stackrel{?}{=} 1$$

$$1 = 1$$

Inductive hypothesis
Arrume $\frac{d^{n}}{dx^{n}}(\chi^{n}) = n!$ for any fixed $n \geq 0$, $n \in \mathbb{Z}$

Prove $\frac{d^{n+1}}{dx^{n+1}}(\chi^{n+1}) \stackrel{?}{=} (n+1)!$

$$\frac{d^{n}}{dx^{n}}(\chi^{n}) = n!$$

$$\frac{d^{n}}{dx^{n}}(\chi^{n}) \stackrel{?}{=} \frac{d}{dx}(n!)$$

$$\frac{d}{dx}(n!) = \frac{d}{dx}(n!)$$
Thuse
$$Q \in \mathbb{D}$$

Definition: a function f(x) is one-to-one (1-1) if

$$f(c) = f(d) \Rightarrow c = d$$

Derivative of an Inverse Function: If y = f(x) is differentiable and has an inverse function $x = f^{-1}(y)$, then f^{-1} is differentiable and its derivative is

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$
 if $\frac{dy}{dx} \neq 0$.

Example 2.1

Find the inverse f^{-1} of the function $f(x) = x^3$ then find the derivative of f^{-1} .

Solution: The function $y = f(x) = x^3$ is one-to-one over the set of all real numbers (why?) so it has an inverse function $x = f^{-1}(y)$ defined for all real numbers, namely $x = f^{-1}(y) = \sqrt[3]{y}$.

The derivative of f^{-1} is

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{3x^2} \quad \text{, which is in terms of } x \text{, so putting it in terms of } y \text{ yields}$$

$$= \frac{1}{3(\sqrt[3]{y})^2} = \frac{1}{3y^{2/3}}$$

$$\frac{2}{4} = \frac{1}{3} \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) = \frac{1}{3} \frac{1}$$

which agrees with the derivative obtained by differentiating $x = \sqrt[3]{y}$ directly. Note that this derivative is defined for all y except y = 0, which occurs when $x = \sqrt[3]{0} = 0$, i.e. at the point (x, y) = (0, 0).

Is
$$f(x) = f(x)$$

Assume $f(x) = f(x)$

$$f(x) = f(x)$$

$$f(x) = f($$

Memorize

Theorem 1.4. Reflections. Suppose f is a function.

- To graph y = -f(x), reflect the graph of y = f(x) across the x-axis by multiplying the y-coordinates of the points on the graph of f by -1.
- To graph y = f(-x), reflect the graph of y = f(x) across the y-axis by multiplying the x-coordinates of the points on the graph of f by -1.

Memorize

Theorem 1.5. Vertical Scalings. Suppose f is a function and a > 0. To graph y = af(x), multiply all of the y-coordinates of the points on the graph of f by a. We say the graph of f has been vertically scaled by a factor of a.

- If a > 1, we say the graph of f has undergone a vertical stretching (expansion, dilation) by a factor of a.
- If 0 < a < 1, we say the graph of f has undergone a vertical shrinking (compression, contraction) by a factor of $\frac{1}{a}$.

