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1. Find the limit or show that it does not exist.

. Xz —1 =) =l fvoxd )
lim —— €
x-»1 x—1 Li\r;, ¥ oe ()
) _ Toxnl A
oz l'”‘ (_ﬁM z Iyl =
Y2 d! X —)

13, fe) 1017

MTH 263-003N Page 1



ee6] £1: (1, undef)

2. Let fo) =4x -3,

Find f'(x) = % using the difference quotient.
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1.3
Memorize

Notation for the derivative of y = f(x): The following are all equivalent:
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A number § is an infinitesimal if the conditions (a)-(d) hold:
(a) 6#0

(b) if 6 > 0 then ¢ is smaller than any positive real number
(¢) if § <0 then § is larger than any negative real number

(d) 62 =0 (and hence all higher powers of §, such as 6% and 64, are also 0)

Note: Any infinitesimal multiplied by a nonzero real number is also an infinitesimal, while
0 times an infinitesimal is 0.
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MTH 263-003N Page 2



Let dx be an infinitesimal such that f(x + dx) is defined. Then dy = f(x + dx) — f(x) is also
an infinitesimal, and the derivative of y = f(x) at x is the ratio of dy to dx:
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Microstraightness Property: For the graph of a differentiable function, any part of the
curve with infinitesimal length is a straight line segment.
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For a differentiable function f(x), % = f'(x) and so multiplying both sides by dx yields the
important relation:

df = f'(x)dx 1.9

13:4
A

For Exercises 1-9, let dx be an infinitesimal and prove the given formula.
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14. Show that % (tanx) = sec? x. (Hint: Use Exercise 4.)

tan(a) = tan(3)
1 F tan(«) tan(3)

o tan(a+ ) =

tan(x + dx) — tanx
dx

_ ; )
- (tanx) =

tanx + tandx
1 — tanxtandx

dx
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tanx + dx
1 — (tanx)dx

dx

— tanx

tanx + dx 1 + (tanx)dx
1 — (tanx)dx 1 + (tanx)dx

dx

— tanx
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tanx + dx + (tan’x )dx + (tanx)(dx)?
—tanx
1 — (tan2x)(dx)?

1 — (tan?x)(0)

( tanx + dx + (tan?x)dx + 0 )
= fanx

tanx + dx + (tan x )dx )
— 1anx
(Lx) (dx + (tan®x)dx)

= 1 + tan®x

d
dx

(tanx) = sec?x
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