01-28-25 MTH 263

1 The Derivative

1.1 Introduction page 16: 2, 5

1.2 The Derivative: Limit Approach

page 24: 1, 3, 5, 7, 9

1.3 The Derivatives: Infinitesimal Approach

page 30: 1, 5, 6, 13

Your Name MTH 263 quiz 1 Write each problem. Show calculations. Put a box around each answer.

1. Find the limit or show that it does not exist.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x+1)(x-1)}{x-1}$$

2. Let
$$f(x) = 4x - 3$$
,

Find $f'(x) = \frac{df}{dx}$ using the difference quotient.

$$\frac{\Delta f}{\Delta \lambda} = \frac{f(x+h)-f(x)}{h}$$

$$= \frac{(4/x+h)-3}{h} - \frac{(4x-3)}{h}$$

$$= \frac{4x+4h-x-4x+3}{h}$$

$$= \frac{4x}{h}$$

$$= \frac{4x}{h}$$

$$= \frac{4x}{h}$$

$$= \frac{4x}{h}$$

1.3 Memorize

Notation for the derivative of y = f(x): The following are all equivalent:

$$\frac{dy}{dx}$$
, $f'(x)$, $\frac{d}{dx}(f(x))$, y' , \dot{y} , $\dot{f}(x)$, $\frac{df}{dx}$, $Df(x)$

Supplied

A number δ is an **infinitesimal** if the conditions (a)-(d) hold:

- (a) $\delta \neq 0$
- **(b)** if $\delta > 0$ then δ is smaller than any positive real number
- (c) if $\delta < 0$ then δ is larger than any negative real number
- (d) $\delta^2 = 0$ (and hence all higher powers of δ , such as δ^3 and δ^4 , are also 0)

Note: Any infinitesimal multiplied by a nonzero real number is also an infinitesimal, while 0 times an infinitesimal is 0.

Supplied

Let dx be an infinitesimal such that f(x+dx) is defined. Then dy = f(x+dx) - f(x) is also an infinitesimal, and the derivative of y = f(x) at x is the ratio of dy to dx:

$$\frac{dy}{dx} = \frac{f(x+dx) - f(x)}{dx} \tag{1.8}$$

Let
$$y = f(x) = 4x - 3$$

$$f'(x) = \frac{dy}{dx} = \frac{f(x+dx)-f(x)}{dx}$$

$$= \frac{[4(x+dx)-3]}{dx} - [4x-3]$$

$$= \frac{4x+4x-x-4x+x}{dx}$$

$$= \frac{4x+4x-x-4x+x}{dx}$$

$$= \frac{4x+4x-x-4x+x}{dx}$$

$$= \frac{(x+dx)^2-x^2}{dx} \qquad \qquad (Note (dx)^2=0)$$

$$= \frac{(x+dx)^2-x^2}{dx} \qquad \qquad (Note (dx)^2-x^2)$$

Supplied

Microstraightness Property: For the graph of a differentiable function, any part of the curve with infinitesimal length is a straight line segment.

For a differentiable function f(x), $\frac{df}{dx} = f'(x)$ and so multiplying both sides by dx yields the important relation:

$$df = f'(x) dx ag{1.9}$$

1.3:4

Α

For Exercises 1-9, let dx be an infinitesimal and prove the given formula.

4. $\tan dx = dx$

$$\sin dx = dx$$

$$\cos dx = 1$$

C

14. Show that $\frac{d}{dx}(\tan x) = \sec^2 x$. (*Hint: Use Exercise 4.*)

•
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$$

$$\frac{d}{dx}(\tan x) = \frac{\tan(x + dx) - \tan x}{dx}$$

$$= \frac{\frac{\tan x + \tan dx}{1 - \tan x \tan dx} - \tan x}{dx}$$

$$-\frac{dx}{dx}$$

$$= \frac{\frac{\tan x + dx}{1 - (\tan x)dx} - \tan x}{dx}$$

$$= \frac{\frac{\tan x + dx}{1 - (\tan x)dx} \frac{1 + (\tan x)dx}{1 + (\tan x)dx} - \tan x}{dx}$$

$$= \left(\frac{1}{dx}\right) \left(\frac{\tan x + dx + (\tan^2 x)dx + (\tan x)(dx)^2}{1 - (\tan^2 x)(dx)^2} - \tan x\right)$$

$$= \left(\frac{1}{dx}\right) \left(\frac{\tan x + dx + (\tan^2 x)dx + 0}{1 - (\tan^2 x)(0)} - \tan x\right)$$

$$= \left(\frac{1}{dx}\right) \left(\frac{\tan x + dx + (\tan^2 x)dx}{1} - \tan x\right)$$

$$= \left(\frac{1}{dx}\right) \left(dx + (\tan^2 x)dx\right)$$

$$= 1 + \tan^2 x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$