11-19-25 MTH 263

7 Analytic Geometry and Plain Curves

7.5 Hyperbolic Functions page 246: 1 (for sinh (-x)), 12, 21, 27

8 Applications of Integrals

8.1 Area Between Curves

page 266: 1, 5, 7, 9

8.2 Average Value of a Function

page 271: 1, 4, 7, 10

7.5: 27

- **27.** The general solution of the differential equation $y'' = a^2 y$ is $y(t) = y_1(t) = c_1 e^{at} + c_2 e^{-at}$, where a is a positive constant, and c_1 and c_2 are arbitrary constants.
 - (a) Verify that $y(t) = y_2(t) = k_1 \cosh at + k_2 \sinh at$ is also a solution of $y'' = a^2 y$.
 - (b) Show that for any c_1 and c_2 , $y_1(t) = c_1 e^{at} + c_2 e^{-at}$ can be written as $y_1(t) = k_1 \cosh at + k_2 \sinh at$ for some constants k_1 and k_2 in terms of c_1 and c_2 .

Show that $y_1(t)$ is a solution of the differential equation.

That
$$y_1(t)$$
 is a solution of the differential equation.

$$y_1(t) = c_1 a e^{at} + c_2 e^{-at}$$

$$y_1'(t) = c_1 a^2 e^{at} + c_2 a^2 e^{-at}$$

$$y_1''(t) = c_1 a^2 e^{at} + c_2 a^2 e^{-at}$$

$$y_1''(t) = a^2 y_1(t)$$

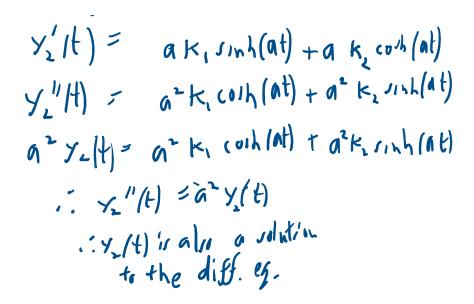
$$y_1''(t) = a^2 y_1(t)$$

of the differential equation

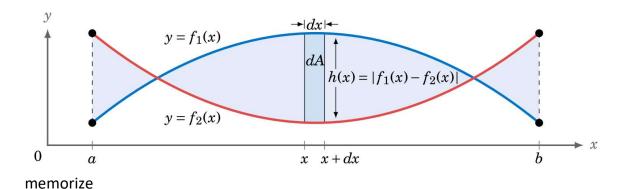
(a)
$$\frac{d}{dx}(\sinh x) = \cosh x$$
$$\frac{d}{dx}(\cosh x) = \sinh x$$

Let
$$y_2(t) = k_1 \cosh(at) + k_2 \sinh(at)$$

 $y_2'(t) = a k_1 \sinh(at) + a k_2 \cosh(at)$



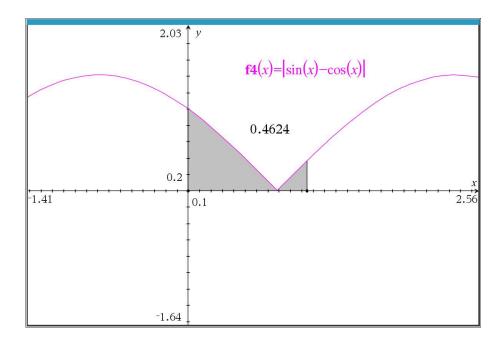
8.1



The area A between two curves $y = f_1(x)$ and $y = f_2(x)$ over an interval [a, b] is:

$$A = \int_{a}^{b} dA = \int_{a}^{b} |f_{1}(x) - f_{2}(x)| dx$$
 (8.1)

The interval [a,b] can be replaced by any interval—finite or infinite—over which the integral is defined. Neither curve is required to be above the x-axis.



$$\frac{4 \cdot \sqrt{2} - 3 - \sqrt{3}}{2}$$

$$\frac{-(\sqrt{3} - 4 \cdot \sqrt{2} + 3)}{2}$$

$$\frac{-(\sqrt{3} - 4 \cdot \sqrt{2} + 3)}{2}$$
Decimal
$$0.462402$$

Note: TI-84 gave 0.4634584

91itch

Supplied

The area A between two polar curves $r=r_1(\theta)$ and $r=r_2(\theta)$ for $\alpha \leq \theta \leq \beta$ is:

$$A = \int_{\alpha}^{\beta} \frac{1}{2} |r_1^2 - r_2^2| d\theta$$
 (8.2)

Copilot

Give me an example, without working it out, of finding the area bounded by two curves.

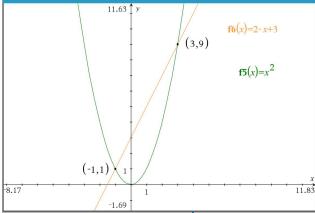
Sure! Here's a classic example:

Find the area bounded by the curves $y=x^2$ and y=2x+3

This setup involves a parabola and a straight line. To find the area between them, you'd typically:

- Determine the points of intersection.
- Set up an integral with the top curve minus the bottom curve.
- Integrate over the interval defined by the intersection points.

$$x^{2} = 2\alpha + 3$$
 $x^{2} - 1\alpha - 3 = 0$
 $(x + 1)(x - 3) = 0$
 $(x = -1, 3)$
 $= 3$



Let & = area between curves

$$A = \int_{-1}^{3} 2x + 3 - x^{2} dx$$

$$= \int_{-1}^{3} (2x + 3 - 2^{2}) dx$$

$$= 2^{2} + 3x - 2^{3}$$

$$= (9 + 9 - 9) - (1 - 3 + \frac{1}{3})$$

$$= 9 - (-2 + \frac{1}{3})$$

$$= 11 - \frac{1}{3} = \frac{31}{3} \approx 10,67$$

$$32/3 = 10.6667$$

