10-22-25 MTH 263

4 Applications of Derivatives
4.1 Optimization
page 108: 1, 3,7, 13,17

Took exam 2

Memorize

A function f has a global maximum at x = ¢ if f(¢) = f(x) for all x in the domain of
f. Similarly, f has a global minimum at x = ¢ if f(¢) < f(x) for all x in the domain
of f. Say that f has a local maximum at x = ¢ if f(c) = f(x) for all x “near” c,
i.e. for all x such that |x —c¢| < d for some number 6 > 0. Likewise, f has a local
minimum at x = ¢ if f(c¢) < f(x) for all x such that |x—¢| < § for some number § > 0.
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Definition: a critical point is where f'(x) is not
defined or f'(x) = 0.

Critical points are candidates for local max and local
min.
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Memorize

Second Derivative Test: Let x = ¢ be a critical point of f (i.e f'(c) = 0). Then:
(a) If f"(c) > 0 then f has a local minimum at x = c.

(b) If f"(c) < 0 then f has a local maximum at x = c.

(¢) If f"(c) = 0 then the test fails.
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Possibly useful

f‘lf>0 f"<0 fH:O
local min. local max. test fails
Memorize

How to find a global maximum or minimum

Suppose that f is defined on an interval I. There are two cases:

1. The interval I is closed: The global maximum of f will occur either at an
interior local maximum or at one of the endpoints of I whichever of these points
provides the largest value of f will be where the global maximum occurs.
Similarly, the global minimum of f will occur either at an interior local min-
imum or at one of the endpoints of I; whichever of these points provides the
smallest value of f will be where the global minimum occurs.

2. The interval I is not closed and has only one critical point: If the only
critical point is a local maximum then it is a global maximum. If the only critical
point is a local minimum then it is a global minimum.
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No critical point

263-002N Page 2




6.67 | ¥

fl(x):x3 +2-a2ctl

-10 ; T
~6.67
-;f(,,o) = (,/u)” + L(-10) #1 Z <100 -9 = -1009
b Z |roL U
S(w) = b ENTRIEA LS .
j o be l\aﬂ%

Now, find global max and min on [-2,2]
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Sqrt(2/3)=0.816496580927726
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Now, change the interval to [-1,1].
The local max and local min are the
same as above.
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