10-20-25 MTH 263

3.6 Differentials
page 98:1,3,5,9

Exam 2, Wednesday, 10/22/25, 2.1-2.4, 3.1 - 3.6

14 class meetings before final exam
10 textbook sections
10/14=0.7143 section per class meeting

3.6:9

9. The continuity relation for an ideal gas is
Lic . constant
VT

where P and T are the pressure and temperature, respectively, of the gas, and M is the Mach

number. Show that
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Squeeze Theorem: Suppose that for some functions f, g and A there is a number
x0 = 0 such that
g(x) < f(x) < h(x) for all x >xg

and that lim g(x) = lim A(x) = L. Then lim f(x) = L.
X—00 X—00 xX—00

Similarly, if g(x) < f(x) < h(x) for all x # a in some interval I containing a, and if
alcll% glx) = 3161311 h(x) = L, then 9151311 f(x) = L.

Guichard
6. For all z >0, 42 — 9 < f(z) < 2* — 42 + 7. Find lim, f ().
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Guichard

8. Use the Squeeze Theorem to show that Iin%} z* cos(2/z) = 0.
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3.5:4

4. A 10-ft ladder is leaning against a wall on level ground. If the bottom of the ladder is dragged away
from the wall at the rate of 5 ft/s, how fast will the top of the ladder descend at the instant when it
is 8 ft from the ground?
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The top of the ladder descends at a rate of 3.75 ft/sec.
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negative values of x.

Gemini
2.5 Flash +

< Upgrade

Find lim as x approaches minus infinity of x*e"x.

&  Analysis v
(®  The limit of ze” as z approaches —oo is 0.

This limit is an indeterminate form of the type (foo) - 0, which can be solved by rewriting the

expression and applying L'Hopital's Rule.

Derivation

The limit is:

lim ze®
T—r—00

First, we rewrite the expression to get the indeterminate form %:

As x — —o00, the numerator x — —o0, and the denominator e — > = 00. The form is %

Now, we apply L'Hopital's Rule, which states that for a limit of the form %, the limit is equal to
the limit of the ratio of the derivatives of the numerator and the denominator:

Finally, we evaluate the limit:

lim
z——00 —e T

-

As z — —00, the exponent —z — 00, so e~ ¥ — co. Therefore, the denominator —e~* —

—0OQ.
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Therefore,

lim ze® =0
r——00

This result is a specific case of a more general principle in limits: exponentials grow (or decay)

faster than any polynomial. In this case, e approaches 0 much faster than z approaches —oo,

causing the entire product to approach 0.
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