3.6 Differentials

page 98: 1, 3, 5, 9

Exam 2, Wednesday, 10/22/25, 2.1-2.4, 3.1 - 3.6

14 class meetings before final exam
10 textbook sections

10/14=0.7143 section per class meeting

3.6:9

9. The continuity relation for an ideal gas is

$$\frac{PM}{\sqrt{T}}$$
 = constant

where P and T are the pressure and temperature, respectively, of the gas, and M is the Mach number. Show that

$$\frac{dP}{P} + \frac{dM}{M} = \frac{dT}{2T}.$$

$$\frac{PM}{JT} = K = constant$$

$$PM = KJT$$

$$d(PM) = d(KJT)$$

$$PdM + MdP = Kd(T^{\frac{1}{2}})$$

$$PM = K = 2 I I MP JT$$

$$PM = K$$

$$T = M$$

$$T$$

3.6: 3

3. Show that
$$d(\tan^{-1}(y/x)) = \frac{xdy - ydx}{x^2 + y^2}$$

$$d(\tan^{-1}(\frac{y}{x}))$$

$$= \frac{1}{1 + \frac{y^2}{x^2}} d(\frac{y}{x})$$

$$= \frac{1}{1 + \frac{y^2}{x^2}} \left(\frac{xdy - ydx}{x^2} \right)$$

$$= \frac{1}{2^2 + y^2} \left(\frac{xdy - ydx}{x^2} \right)$$

$$= \frac{xdy - ydx}{x^2 + y^2}$$

Squeeze Theorem: Suppose that for some functions f, g and h there is a number $x_0 \geq 0$ such that

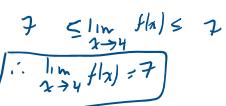
$$g(x) \le f(x) \le h(x)$$
 for all $x > x_0$

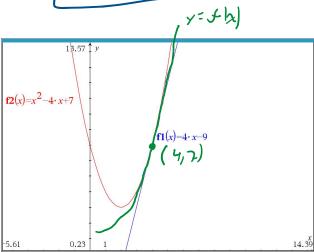
and that $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} h(x) = L$. Then $\lim_{x\to\infty} f(x) = L$.

Similarly, if $g(x) \le f(x) \le h(x)$ for all $x \ne a$ in some interval I containing a, and if $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$.

Guichard

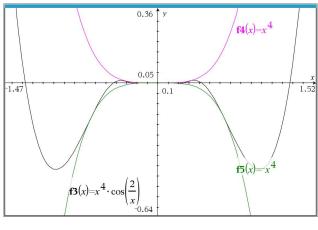
6. For all $x \ge 0$, $4x - 9 \le f(x) \le x^2 - 4x + 7$. Find $\lim_{x \to 4} f(x)$.



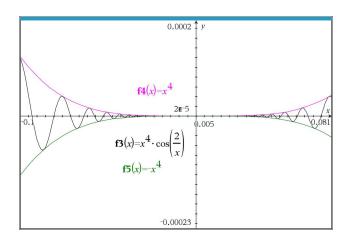


Guichard

8. Use the Squeeze Theorem to show that $\lim_{x\to 0} x^4 \cos(2/x) = 0$.



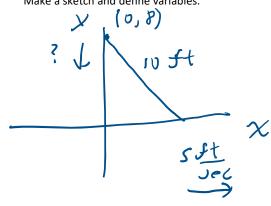
1, this



3.5: 4

4. A 10-ft ladder is leaning against a wall on level ground. If the bottom of the ladder is dragged away from the wall at the rate of 5 ft/s, how fast will the top of the ladder descend at the instant when it is 8 ft from the ground?

Make a sketch and define variables.



Let
$$y(t)$$
 = height of ladder (#1)

at time $t(sec)$

Let $x(t)$ = distance of borse (ft)

at time $t(sec)$

Find $\frac{dy}{dt}$ when $y(t) = 8ft$
 $\frac{dx}{dt} = 5 \frac{ft}{yec}$

263-002N Page 4

$$\frac{d}{dt} = \frac{10 \text{ ft}}{dt} = \frac{100 \text{ ft}}{$$

The top of the ladder descends at a rate of 3.75 ft/sec.

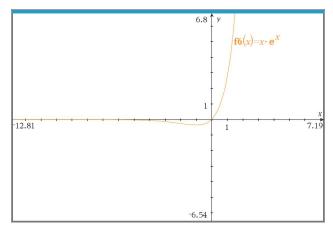
$$\frac{1}{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{d}{dx} \frac{1}{x}$$

$$= \lim_{x \to \infty} \frac{2x}{x} = \lim_{x \to \infty} 2x = \infty \text{ (dine)}$$

$$= \lim_{x \to \infty} \frac{2x}{x} = \lim_{x \to \infty} 2x = \infty \text{ (dine)}$$

$$= \lim_{x \to \infty} \frac{2x}{x} = \lim_{x \to \infty} 2x = \infty \text{ (dine)}$$

$$\lim_{x \to -\infty} x e^{x} = \lim_{x \to -\infty} \frac{e^{x}}{\frac{1}{x}} = \lim_{x \to -$$



It appears that

lun zex = 0

x > -2

This is not defined form

 $= \lim_{x \to -\infty} \left(\ln x + x \right)$

This is not defined form negative values of x.

Upgrade

Gemini 2.5 Flash ▼

Find lim as x approaches minus infinity of x*e^x.

•

Analysis 🗸

 \odot

The limit of xe^x as x approaches $-\infty$ is 0.

This limit is an indeterminate form of the type $(-\infty) \cdot 0$, which can be solved by rewriting the expression and applying **L'Hôpital's Rule**.

Derivation

The limit is:

$$\lim_{x o -\infty}xe^x$$

First, we rewrite the expression to get the indeterminate form $\frac{\infty}{\infty}$:

$$\lim_{x o -\infty} x e^x = \lim_{x o -\infty} rac{x}{e^{-x}}$$

As $x\to -\infty$, the numerator $x\to -\infty$, and the denominator $e^{-x}\to e^\infty=\infty$. The form is $\frac{-\infty}{\infty}$.

Now, we apply **L'Hôpital's Rule**, which states that for a limit of the form $\frac{\infty}{\infty}$, the limit is equal to the limit of the ratio of the derivatives of the numerator and the denominator:

$$\lim_{x o-\infty}rac{rac{d}{dx}(x)}{rac{d}{dx}(e^{-x})}=\lim_{x o-\infty}rac{1}{-e^{-x}}$$

Finally, we evaluate the limit:

$$\lim_{x o -\infty}rac{1}{-e^{-x}}$$

As $x\to -\infty$, the exponent $-x\to \infty$, so $e^{-x}\to \infty$. Therefore, the denominator $-e^{-x}\to -\infty$.

$$\frac{1}{-\infty}=0$$

Therefore,

$$\lim_{x o -\infty}xe^x=0$$

This result is a specific case of a more general principle in limits: **exponentials grow (or decay)** faster than any polynomial. In this case, e^x approaches 0 much faster than x approaches $-\infty$, causing the entire product to approach 0.