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3.5 Related Rates
page 93: 1, 3, 6,10

3.6 Differentials
page 98:1,3,5,9

4 Applications of Derivatives
4.1 Optimization
page 108: 1, 3,7,13,17

Exam 2, Wednesday, 10/22/25, 2.1-2.4, 3.1 - 3.6

3.6
Memorize

For a differentiable function f(x), the differential of f(x) is

df = f'(x)dx 3.7

where dx is an infinitesimal change in x.

Memorize

Let f and g be differentiable functions, and let ¢ be a constant. Then:
(a) d(c) =0

(b) d(cf) = cdf (Constant Multiple Rule)
(¢) d(f +g) = df + dg (Sum Rule)

(d) d(f—g) = df — dg (Difference Rule)
(e) d(fg) = fdg + gdf (Product Rule)
o.f]- 4505

(g) d(f") = nf*'df (Power Rule)

(h) d(f(g) = %dg (Chain Rule)

(Quotient Rule)
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4.1
Memorize
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A function f has a global maximum at x = ¢ if f(¢) = f(x) for all x in the domain of
f. Similarly, f has a global minimum at x = ¢ if f(c) < f(x) for all x in the domain
of f. Say that f has a local maximum at x = ¢ if f(c) = f(x) for all x “near” c,
i.e. for all x such that |x—c| < d for some number § > 0. Likewise, f has a local
minimum at x = ¢ if f(c) < f(x) for all x such that |x—c| < § for some number § > 0.

Memorize

Second Derivative Test: Let x = ¢ be a critical point of £ (i.e f'(c) = 0). Then:
(a) If f"(c) > 0 then f has a local minimum at x = c.

(b) If f"(c) < 0 then f has a local maximum at x = c.

(¢) If f""(c) = 0 then the test fails.
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Memorize concept

How to find a global maximum or minimum

Suppose that f is defined on an interval I. There are two cases:

1. The interval I is closed: The global maximum of f will occur either at an
interior local maximum or at one of the endpoints of I whichever of these points
provides the largest value of f will be where the global maximum occurs.
Similarly, the global minimum of f will occur either at an interior local min-
imum or at one of the endpoints of I; whichever of these points provides the
smallest value of f will be where the global minimum occurs.

2. The interval [ is not closed and has only one critical point: If the only
critical point is a local maximum then it is a global maximum. If the only critical
/ point is a local minimum then it is a global minimum.
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critical point is a local maximum then it is a global maximum. If the only critical
point is a local minimum then it is a global minimum.

‘ . mmm~ mmave s v eea a4 A mAv Y va e Semssm mmsans Smma)  AAS A avasses o smmswe as Vaav Uaaag

> > /u (al and! .7} l)/\ }V,W

.
J'\'“,‘.L7C /I\ g

Yy bl ooz oxt
L

Note: a critical point of the function f(x) is where the derivative =0 or does not exist. (mentioned in the
next section.)

Guichard
Summary—Steps to solve an optimization problem.

1. Decide what the variables are and what the constants are, draw a diagram if
appropriate, understand clearly what it is that is to be maximized or minimized.

2. Write a formula for the function for which you wish to find the maximum or
minimum.

3. Express that formula in terms of only one variable, that is, in the form f(z).

4. Set f’(z) = 0 and solve. Check all critical values and endpoints to determine the
extreme value.

Guichard 6.1
2. Find the dimensions of the rectangle of largest area having fixed perimeter 100.
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Guichard

DEFINITION 6.4.3 Let y = f(x) be a differentiable function. We define a new
independent variable dz, and a new dependent variable dy = f’(z) dz. Notice that dy is a
function both of = (since f’(z) is a function of z) and of dx. We say that dz and dy are
differentials. ]

Let Az = z —a and Ay = f(z) — f(a). If z is near a then Az is small. If we set
dx = Az then

Ay
= 4 ~ — —
dy = f'(a)dx ~ xAx Ay.

Thus, dy can be used to approximate Ay, the actual change in the function f between a
and x. This is exactly the approximation given by the tangent line:

dy = f'(a)(x — a) = f'(a)(z — a) + f(a) — f(a) = L(z) — f(a).



While L(z) approximates f(z), dy approximates how f(z) has changed from f(a). Fig-
ure 6.4.2 illustrates the relationships.

3.6

2. Find the differential df of f(x) = sin?(x?2).
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Gemini agrees

3,6
4. Given y? —xy +2x2 =3, find dy.

—j;(flj'%/x 7) *%( M}) > d /3)

d
2y 4] dy _yda
dy %;;; YA,,\’—,,-\’LM( =/



4.1

2. ProvethatforO<p<1, p(1-p)< %.
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