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3.2 Limits: Formal Definition
page 82: 1,3, 5,7,13

3.3 Continuity
page 88: 1, 5, 15, 25, 29
3.4 Implicit Differentiation
page 91:1,7,13, 14

3.2:13
For Exercises 1-18 evaluate the given limit.

13. lim In(d-x) - sin®x = || o :HDC)
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The graph supports, but does not prove, our
calculation.
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You are responsible for applying the formal
definition of a limit to linear functions.

Calculator example for a given epsilon.
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3.3
Memorize

A function f is continuous at x = a if
lim f(x) = f(a). (3.4)
x—a

A function is continuous on an interval I if it is continuous at every point in the
interval. For a closed interval I = [a,b], a function f is continuous on [ if it is
continuous on the open interval (a,b) and if lim,_.,. f(x) = f(a) (i.e. [ is right
continuous at x = a) and lim,_.;_ f(x) = f(b) (i.e. [ is left continuous at x = b).
A function is discontinuous at a point if it is not continuous there. A continuous
function is one that is continuous over its entire domain.
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Figure 3.3.1 Continuous at x1, discontinuous at x2, x3 and x4

Example 3.22

The floor function |x] is defined as

lx] = the largest integer less than or equal to x .

In other words, [x] rounds a non-integer down to the previous integer, and integers stay the same. For
example, [0.1] =0, [0.9] =0, [0] =0, and |-1.3] = —2. The graph of |x] is shown in Figure 3.3.2(a).
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(a) Floor function |x] (b) Ceiling function [x]

Figure 3.3.2 Floor and ceiling functions

Memorize

If f is a continuous function and lim g(x) exists and is finite, then:
x—a

f(lim g@) = lim F(g()

The same relation holds for one-sided limits.

(3.5)

Memorize theorem

Every differentiable function is continuous.

Proof: If a function f is differentiable at x = @ then f'(a) = }Cgrgl W exists, so

lim (F)—F @) = lim (Fl—flas—s = fim L2110
x—a x—a X—Qa

lim (x—a) = f'(@)-0 = 0
x—a x—a x—a
which means that 11_,m,, fx) = f(a),i.e. fiscontinuousatx=a. v

Note: the converse is false.
For example | 4(, has no derivative at x = 0, but it is continuous on (v OO, w\
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Note: the converse is false.
For example | /\(, has no derivative at x = 0, but it is continuous on (v (0,9) OU)

Memorize

Extreme Value Theorem: If f is a continuous function on a closed interval [a, b]
then f attains both a maximum value and a minimum value on that interval.

Intermediate Value Theorem: If f is a continuous function on a closed interval
[a,b] then f attains every value between f(a) and f(5).
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3.4 implicit differentiation.
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Now, use implicit differentiation
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For Exercises 1-9, use implicit differentiation to find d—z

2. xy = (x+y)3
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