2 Derivatives of Common Functions

2.1 Inverse Functions page 50: 1, 3, 5

2.2 Trigonometric Functions and Their Inverses page 54: 1, 4, 5, 15

Exam 1		stem & leaf		
50.21053	mean			A-0
53	median	8	6	B-1
19.73396	st. dev	7	448	C-3
17	min	6	4	D-1
86	max	5	037999	F- 14
19	count	4	03	
		3	02	
		2	289	
		1	7	

2.1:5

Α

For Exercises 1-8, show that the given function y = f(x) is one-to-one over the given interval, then find the formulas for the inverse function f^{-1} and its derivative. Use Example 2.2 as a guide, including putting f^{-1} and its derivative in terms of x.

5.
$$f(x) = \frac{1}{x}$$
, for all $x > 0$

Example 2.2 -

Find the inverse f^{-1} of the function $f(x) = x^3$ then find the derivative of f^{-1} .

Solution: Rewrite $y = f(x) = x^3$ as $x = f(y) = y^3$, so that its inverse function $y = f^{-1}(x) = \sqrt[3]{x}$ has derivative

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{3y^2}$$
 , which is in terms of y , so putting it in terms of x yields

$$= \frac{1}{3(\sqrt[3]{x})^2} = \frac{1}{3x^{2/3}}$$

which agrees with the derivative obtained by differentiating $y = \sqrt[3]{x}$ directly.

$$y = f(x) = \frac{1}{x}$$

$$x = f(y) = \frac{1}{y}$$

$$y = \frac{1}{x}$$

$$dy = d(\frac{1}{x}) = d(x^{-1})$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{x}\right) = \frac{d}{dx} \left(\frac{1}{x}\right)$$

$$= -x^{2} = \frac{dy}{dx}$$

$$= -\frac{1}{x^{2}} = \frac{dy}{dx}$$

$$y = \frac{1}{x} = \frac{1}{x^{2}}$$

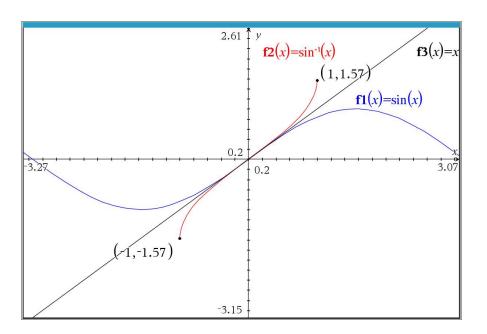
$$y = \frac{1}{x} = \frac{1}{x^{2}}$$

$$x = \frac{1}{x} = \frac{1}{x}$$

$$x = \frac{$$

2.2 Supplied

function	$\sin^{-1}x$	$\cos^{-1} x$	$\tan^{-1} x$	$\csc^{-1} x$	$\sec^{-1} x$	$\cot^{-1} x$
domain	[-1, 1]	[-1,1]	$(-\infty,\infty)$	$ x \ge 1$	$ x \ge 1$	$(-\infty,\infty)$
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\left(-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right)$	$\left(0,\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right)$	$(0,\pi)$



Supplied, or I will ask you to prove.

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \quad (\text{for } |x| < 1) \qquad \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2 - 1}} \quad (\text{for } |x| > 1)$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}} \quad (\text{for } |x| < 1) \qquad \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}} \quad (\text{for } |x| > 1)$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

For the derivative of $\cos^{-1} x$, recall that $y = \cos^{-1} x$ is an *angle* between 0 and π radians, defined for $-1 \le x \le 1$. Since $\cos y = x$ by the definition of y, then $\frac{dx}{dy} = -\sin y$ and

$$\sin^2 y = 1 - \cos^2 y = 1 - x^2 \implies \sin y = \pm \sqrt{1 - x^2} = \sqrt{1 - x^2}$$

since $0 \le y \le \pi$ (which means $\sin y$ must be nonnegative). Thus:

$$\frac{d}{dx}(\cos^{-1}x) = \frac{dy}{dx} = \frac{1}{-\sin y} = -\frac{1}{\sqrt{1-x^2}}$$

$$y = \cos^{-1}(x)$$

$$y = \cos^{-1}(x)$$

$$\Rightarrow y = \cos^{-1}(x)$$

$$\Rightarrow \cos y = 1$$

$$\frac{dx}{dy} = \frac{d}{dy}(\cos y)$$

$$\frac{dx}{dy} = -\sin(y)$$

Find
$$\frac{d}{dx}(\cos^{-1}|x)$$
 $y = \cos^{-1}|x)$
 $y = \cos^{-1}|x)$
 $|x| = \cos y = 2x$
 $|x| = |x| = |x|$
 $|x| = |$

2.1

A For Exercises 1-16, find the derivative of the given function y = f(x).

8.
$$y = \cos^{-1}(\sin x)$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$
 (for $|x| < 1$)

$$\frac{dy}{dx} = \frac{d}{dx} \left(\cos x^{-1} \left(\sin x \right) \right)$$

$$= \frac{1}{\int |\sin^2 x|} \frac{d}{dx} \left(\sin x \right)$$

$$= \frac{1}{\int |\cos x|} \left(\cos x \right)$$

$$= \frac{1}{\int \cos^2 x} \left(\cos^2 x \right)$$

$$= \frac{1}{\int \cos^2 x} \left(\cos^2 x \right)$$

Bonus quiz 2 (group) open book, open notes, calculator OK

17. Find the derivative of $y = \sin^{-1} x + \cos^{-1} x$. Explain why no derivative formulas were needed.

Bonus quiz 2 (group) open book, open notes, calculator OK

17. Find the derivative of $y = \sin^{-1} x + \cos^{-1} x$. Explain why no derivative formulas were needed.

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \quad (\text{for } |x| < 1)$$

$$\frac{d}{dx}\left(\int_{-1}^{1} x + \cos^{-1}x\right)$$

$$\int_{-1}^{1} \int_{-1}^{1} x + \cos^{-1}x = 0$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$
 (for $|x| < 1$)

By formulas

$$\frac{d}{dx}\left(s_{1}n^{-1}\alpha + cos^{-1}\alpha\right)$$

$$= \frac{1}{\sqrt{1-\lambda^{2}}} - \frac{1}{\sqrt{1-\lambda}} = 0$$

