Took exam 1

- 2 Derivatives of Common Functions
 - 2.1 Inverse Functions page 50: 1, 3, 5

Gemini

2.5 Flash ▼

What is the derivative of the inverse of f(x)?

The derivative of the inverse of a function f(x) is given by the formula:

$$rac{d}{dx}[f^{-1}(x)]=(f^{-1})'(x)=rac{1}{f'(f^{-1}(x))}$$

This is a direct application of the Inverse Function Theorem. It states that the derivative of the inverse function at a point x is the reciprocal of the derivative of the original function evaluated at the inverse point $f^{-1}(x)$.

Would you like me to demonstrate how to use this formula with an example, such as finding the derivative of the inverse of $f(x)=x^2$?

Yes, please.

By finding the derivative of $f(x)=x^2$ and its inverse function $f^{-1}(x)=\sqrt{x}$, we can verify the Inverse Function Theorem.

First, we find the derivatives of both functions:

- The derivative of the original function $f(x) = x^2$ is f'(x) = 2x.
- The derivative of the inverse function $f^{-1}(x)=\sqrt{x}$ is $(f^{-1})'(x)=rac{1}{2\sqrt{x}}.$

Next, we apply the Inverse Function Theorem:

- We substitute the inverse function $f^{-1}(x)$ into the derivative of the original function f'(x), which gives us $f'(f^{-1}(x))=2\sqrt{x}$.
- Then we take the reciprocal: $\frac{1}{f'(f^{-1}(x))} = \frac{1}{2\sqrt{x}}$.

As you can see, the result from the formula, $\frac{1}{2\sqrt{x}}$, matches the derivative of the inverse function calculated directly, $(f^{-1})'(x)=\frac{1}{2\sqrt{x}}$.

Would you like to try this with another function, or explore a different concept in calculus?

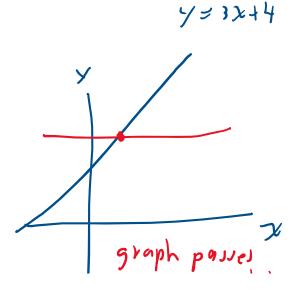
Definition: A function f(x) is one-to-one (1-1) if

$$f(x_1) = f(x_2)$$

$$f(x_1) = f(x_2)$$

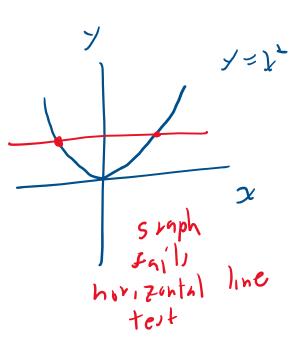
$$f(x) = 3x + 4$$

in $f(x) = 1-1$?
Assume $f(x_1) = f(x_2)$
 $\Rightarrow 3x_1 + 4 = 3x_2 + 4$
 $\Rightarrow 3x_1 = 3x_2$
 $\Rightarrow x_1 = x_2$



graph passes
the horitantal
line test

 $f(x) = \chi^{2}$ $(1) \quad f(x) = f(x_{1}) = f(x_{2})$ $f(x_{1})^{2} = (\chi_{2})^{2}$ $f(x_{1})^{2} = (\chi_{2})^{2}$ $f(x_{1}) = f(\chi_{2})$ $f(x_{1}) = f(\chi_{2})$ $f(x_{1}) = f(\chi_{2})$



Memorize

Derivative of an Inverse Function: If y = f(x) is differentiable and has an inverse function $x = f^{-1}(y)$, then f^{-1} is differentiable and its derivative is

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$
 if $\frac{dy}{dx} \neq 0$.

Example 2.1

Find the inverse f^{-1} of the function $f(x) = x^3$ then find the derivative of f^{-1} .

Solution: The function $y = f(x) = x^3$ is one-to-one over the set of all real numbers (why?) so it has an inverse function $x = f^{-1}(y)$ defined for all real numbers, namely $x = f^{-1}(y) = \sqrt[3]{y}$.

The derivative of f^{-1} is

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{3x^2} \quad \text{, which is in terms of } x \text{, so putting it in terms of } y \text{ yields}$$

$$= \frac{1}{3\left(\sqrt[3]{y}\right)^2} = \frac{1}{3y^{2/3}}$$

which agrees with the derivative obtained by differentiating $x = \sqrt[3]{y}$ directly. Note that this derivative is defined for all y except y = 0, which occurs when $x = \sqrt[3]{0} = 0$, i.e. at the point (x, y) = (0, 0).

$$x = \frac{3}{3} = \frac{1}{3}$$

$$\frac{dx}{dx} = \frac{1}{3} = \frac{1}{3}$$

$$\frac{dx}{dy} = \binom{1}{3} y^{\frac{1}{3}-1} = \binom{1}{3} y^{\frac{1}{3}-2} = \binom{1}{3} y^{\frac{1}{3}-3} = \binom{1}{3} y^{\frac{1}{3}-3} = \binom{1}{3} \binom{1}{3} y^{\frac{1}{3}-3} = \binom{1}{3} \binom{1}{3}$$

Example 2.2

Find the inverse f^{-1} of the function $f(x) = x^3$ then find the derivative of f^{-1} .

Solution: Rewrite $y = f(x) = x^3$ as $x = f(y) = y^3$, so that its inverse function $y = f^{-1}(x) = \sqrt[3]{x}$ has derivative

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{3y^2}$$
, which is in terms of y , so putting it in terms of x yields
$$= \frac{1}{3(\sqrt[3]{x})^2} = \frac{1}{3x^{2/3}}$$

which agrees with the derivative obtained by differentiating $y = \sqrt[3]{x}$ directly.

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}$$
 if $f'(x) \neq 0$

Two equivalent ways to write this are:

$$(f^{-1})'(c) = \frac{1}{f'(a)}$$
 where $c = f(a)$ and $f'(a) \neq 0$

and

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 if $f'(f^{-1}(x)) \neq 0$

$$y = f(x) = \int_{X}$$

$$F(x) = \int_{X}$$

$$f(x)$$

$$f(x) = \chi^{2}$$

$$d(f(x)) = 2\gamma$$

$$d(f(x)) = 2\gamma$$

in (5 (V)) - x