10-28-25 MTH 167-004N

5.2 Inverse Functions

5.2.1 Exercises

page 391 (403): 1, 5, 11, 17, 23

6 Exponential and Logarithmic Functions

6.1 Introduction to Exponential and Logarithmic Functions

6.1.1 Exercises

page 429 (441): 1, 5, 16, 26, 45, 56, 71, 75

6.2 Properties of Logarithms

6.2.1 Exercises

page 445 (457): 1, 5, 10, 16, 23, 30, 42

Exam 2		stem & leaf		
43.14815	mean			A-1
40	median	9	6	B-2
24.938	st. dev	8	34	C-2
5	min	7	99	D-2
96	max	6	27	F- 20
27	count	5	28	
		4	02556	
		3	149	
		2	2379	
		1	12789	
		0	5	

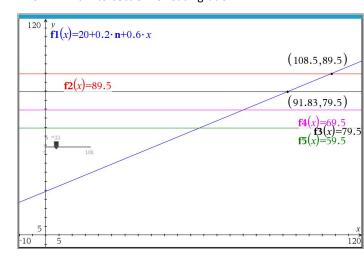
Exam 1		stem & leaf		
49.82759	mean	10	0	A-1
49	median	9		B-2
19.64525	st. dev	8	25	C-2
14	min	7	11	D-3
100	max	6	067	F- 21
29	count	5	011556	
		4	01899	
		3	0235559	
		2	6	
		1	49	

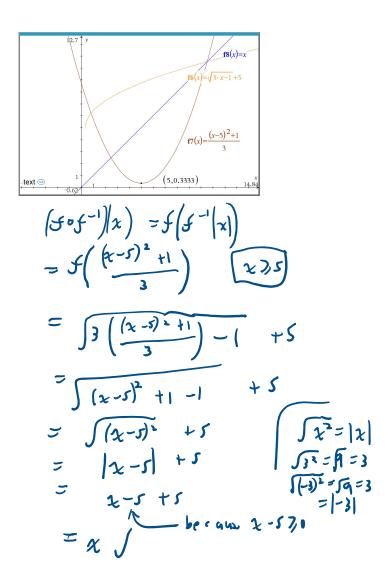
5.2:5

In Exercises 1 - 20, show that the given function is one-to-one and find its inverse. Check your answers algebraically and graphically. Verify that the range of f is the domain of f^{-1} and vice-versa.

5.
$$f(x) = \sqrt{3x-1}+5$$
 $f(x) = \sqrt{3x-1}+5$
 $f(x) = \int_{-1}^{1} f(x) + \int_{-1}^{1} f(x$

Substitute your high score for exam 1 and exam 2 for n. Find intersection for each grade.

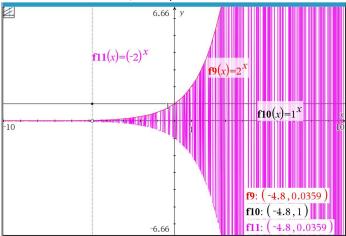




6.1

Definition 6.1. A function of the form $f(x) = b^x$ where b is a fixed real number, b > 0, $b \ne 1$ is called a **base** b **exponential function**.

To avoid the mess below, we require b > 0.



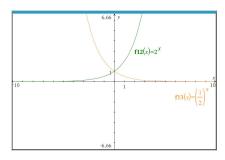
Memorize

Theorem 6.1. Properties of Exponential Functions: Suppose $f(x) = b^x$.

- The domain of f is $(-\infty, \infty)$ and the range of f is $(0, \infty)$.
- (0,1) is on the graph of f and y=0 is a horizontal asymptote to the graph of f.
- $\bullet \ f$ is one-to-one, continuous and smooth a
- If b > 1:
- f is always increasing
- As $x \to -\infty$, $f(x) \to 0^+$ - As $x \to \infty$, $f(x) \to \infty$
- The graph of f resembles:
- If 0 < b < 1:
 - f is always decreasing - As $x \to -\infty$, $f(x) \to \infty$ - As $x \to \infty$, $f(x) \to 0^+$

 - The graph of f resembles:

^aRecall that this means the graph of f has no sharp turns or corners.



$$e^{\text{very big (-)}} = \frac{1}{e^{\text{very big (+)}}} \approx \frac{1}{\text{very big (+)}} \approx \text{very small (+)}$$

Memorize

Definition 6.2. The inverse of the exponential function $f(x) = b^x$ is called the base b loga**rithm function**, and is denoted $f^{-1}(x) = \log_b(x)$ We read ' $\log_b(x)$ ' as 'log base b of x.'

Memorize

Definition 6.3. The **common logarithm** of a real number x is $\log_{10}(x)$ and is usually written $\log(x)$. The **natural logarithm** of a real number x is $\log_e(x)$ and is usually written $\ln(x)$.

$$log(100) = ln 100 = 4.6052$$

Scientific Notebook inteprets log as natural log

$$\log_{10}(100) = 2$$

Theorem 6.2. Properties of Logarithmic Functions: Suppose $f(x) = \log_b(x)$.

- The domain of f is $(0, \infty)$ and the range of f is $(-\infty, \infty)$.
- (1,0) is on the graph of f and x=0 is a vertical asymptote of the graph of f.
- \bullet f is one-to-one, continuous and smooth
- $b^a = c$ if and only if $\log_b(c) = a$. That is, $\log_b(c)$ is the exponent you put on b to obtain c.
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0
- If b > 1:

- If 0 < b < 1:
- f is always increasing
- As $x \to 0^+$, $f(x) \to -\infty$
- As $x \to \infty$, $f(x) \to \infty$
- The graph of f resembles:
- f is always decreasing
- As $x \to 0^+$, $f(x) \to \infty$
- As $x \to \infty$, $f(x) \to -\infty$
- The graph of f resembles:

 $y = \log_b(x), \ 0 < b < 1$

TI-nspire interprets log as common log

memorize

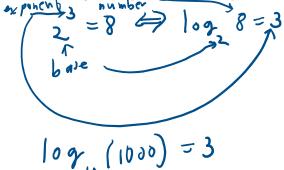
Theorem 6.2. Properties of Logarithmic Functions: Suppose $f(x) = \log_b(x)$.

- The domain of f is $(0, \infty)$ and the range of f is $(-\infty, \infty)$.
- (1,0) is on the graph of f and x=0 is a vertical asymptote of the graph of f.
- ullet f is one-to-one, continuous and smooth
- =c if and only if $\log_b(c)=a$. That is, $\log_b(c)$ is the exponent you put on b to obtain c.
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0
- If b > 1:
- If 0 < b < 1:
- f is always increasing
- f is always decreasing
- As $x\to 0^+,\, f(x)\to -\infty$ – As $x \to \infty$, $f(x) \to \infty$
- As $x \to 0^+$, $f(x) \to \infty$ – As $x \to \infty$, $f(x) \to -\infty$
- $-\,$ The graph of f resembles:

- The graph of f resembles:

6.1

In Exercises 1 - 15, use the property: $b^a = c$ if and only if $\log_b(c) = a$ from Theorem 6.2 to rewrite the given equation in the other form. That is, rewrite the exponential equations as logarithmic equations and rewrite the logarithmic equations as exponential equations.



$$|09_{10}(1000) = 3$$

$$|09_{10}(1000) = 3$$

$$|09_{10}(10) = |000$$

$$|09_{10}(1,009,000) = 6$$

$$|09_{10}(5) = \frac{1}{2} \implies |09_{10}(5) = -\frac{1}{2}$$

5.
$$\left(\frac{4}{25}\right)^{-1/2} = \frac{5}{2}$$

$$\int \frac{1}{4} \int \frac{1}{4} \int \frac{1}{5} \int \frac{1}{5}$$

$$\log_{\frac{4}{25}} \left(\frac{5}{2} \right)$$

6.1

In Exercises 16 - 42, evaluate the expression.

27.
$$\ln(e^3)$$
 $=$ 3

6.2

Memorize

Theorem 6.3. (Inverse Properties of Exponential and Logarithmic Functions) Let $b>0,\,b\neq1.$

- $b^a = c$ if and only if $\log_b(c) = a$
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0

Memorize

Theorem 6.4. (One-to-one Properties of Exponential and Logarithmic Functions) Let $f(x) = b^x$ and $g(x) = \log_b(x)$ where b > 0, $b \ne 1$. Then f and g are one-to-one and

- $b^u = b^w$ if and only if u = w for all real numbers u and w.
- $\log_b(u) = \log_b(w)$ if and only if u = w for all real numbers u > 0, w > 0.

Memorize

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let $f(x) = b^x$ be an exponential function $(b > 0, b \neq 1)$ and let u and w be real numbers.

- Product Rule: f(u+w) = f(u)f(w). In other words, $b^{u+w} = b^u b^u$
- Quotient Rule: $f(u-w) = \frac{f(u)}{f(w)}.$ In other words, $b^{u-w} = \frac{b^u}{b^w}$
- Power Rule: $(f(u))^w = f(uw)$. In other words, $(b^u)^w = b^{uw}$

Memorize

Theorem 6.6. (Algebraic Properties of Logarithmic Functions) Let $g(x) = \log_b(x)$ be a logarithmic function $(b>0, b\neq 1)$ and let u>0 and w>0 be real numbers.

- • Product Rule: g(uw) = g(u) + g(w). In other words, $\log_b(uw) = \log_b(u) + \log_b(w)$
- Quotient Rule: $g\left(\frac{u}{w}\right) = g(u) g(w)$. In other words, $\log_b\left(\frac{u}{w}\right) = \log_b(u) \log_b(w)$
- • Power Rule: $g\left(u^{w}\right)=wg(u).$ In other words, $\log_{b}\left(u^{w}\right)=w\log_{b}(u)$

Product rule: the log of a product is the sum of logs

Proof:
Let
$$A = \log_b u$$
, $B = \log_b w$
 $b^A = u$, $b^B = w$
left side $\log_b (u, w)$
 $= \log_b (b^A b^B)$

=
$$|00_{b}(b^{A+B})$$
 right side
= $A+B = |00_{b}(u) + |00_{b}(w)$

power rule
$$|09_{b}(n^{w}) = w |09_{b} u$$

$$|09_{10}(z^{3})|^{\frac{2}{3}} 3 |09_{10} z$$

$$|09_{10}(z,z,z)|^{\frac{2}{3}} 3 |09_{2} z$$

$$|og_{10}(2) + |og(2.2)| \stackrel{?}{=} 3|og_{2}|^{2}$$

Theorem 6.7. (Change of Base Formulas) Let $a, b > 0, a, b \neq 1$.

- $a^x = b^{x \log_b(a)}$ for all real numbers x.
- $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ for all real numbers x > 0.

convert
$$log_2(x)$$
 to base e

Let $y = log_2(x)$

$$z^y = x$$

$$log_2(x)$$

$$log_2(x)$$

$$z^y = x$$

$$log_2(x)$$

$$log_2($$