3 Polynomial Functions

3.1 Graphs of Polynomials

page 246 (258): 3, 7, 13, 21, 27

3.2 The Factor Theorem and the Remainder Theorem

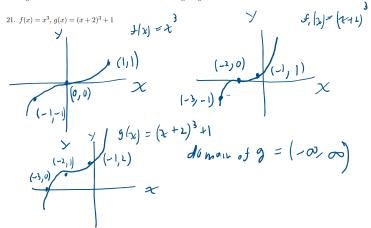
3.2.1 Exercises

page 265 (277): 1, 3, 9, 21, 35, 42

3.3 Real Zeros of Polynomials

3.3.3: Exercises page 280 (392): 1, 31, 37, 48

In Exercises 21 - 26, given the pair of functions f and g, sketch the graph of g = g(x) by starting with the graph of y = f(x) and using transformations. Track at least three points of your choice through the transformations. State the domain and range of g.



3.2 Supplied

Theorem 3.4. Polynomial Division: Suppose d(x) and p(x) are nonzero polynomials where the degree of p is greater than or equal to the degree of d. There exist two unique polynomials, q(x) and r(x), such that $p(x) = d(x) \, q(x) + r(x)$, where either r(x) = 0 or the degree of r is strictly less than the degree of d.

$$p(x) = polynomial$$
 $d(x) = divisor$
 $q(x) = quotient$
 $r(x) = remainder$

Supplied

Theorem 3.5. The Remainder Theorem: Suppose p is a polynomial of degree at least 1 and c is a real number. When p(x) is divided by x - c the remainder is p(c).

Thm. 3.4
$$p(x) = d(x) + p(x) + r(x)$$
 $d(x) = x - c$
 $\Rightarrow p(x) = (x - c) + p(x) + r(x)$

Show $r(x) = p(c)$

$$P(c) = (c - c) + p(c) + r(c)$$

$$p(c) = 0 + p(c) + r(c)$$

$$P(c) = r(c)$$

$$r(x) = 0$$
 or des $r(x) < deg(x-c) = 1$
 $r(x) = 0$ or des $r(x) = 0$

If $f(x) = a_0$, and $a_0 \neq 0$, we say f has degree 0.

Algoritation of
$$r(x) = 0 \Rightarrow r(x) = 90 \neq 0$$

constant

$$r(x) = r(c) = 90 \quad \text{for any } x$$

$$\frac{r(x) = 0}{r(x) = 0} \quad \text{for all } x$$

$$\frac{\cdot \cdot \cdot p(c) = r(x)}{r(x) = 0}$$

$$\frac{\cdot \cdot \cdot p(c) = r(c) = 0}{r(c) = 0}$$

Theorem 3.6. The Factor Theorem: Suppose p is a nonzero polynomial. The real number c is a zero of p if and only if (x-c) is a factor of p(x).

Assume
$$x - c$$
 is a factor of $P(x)$

Prove $x = c$ is a zero of $P(x)$

Thin 7.4 $P(x) = d(x) q(x) + V(x)$
 $P(x) = (x - c) q(x) + V(x)$
 $Y(x) = 0$
 $P(x) = (x - c) q(x)$

Show $x = c$ is a zero of $P(x)$

i.e. show $P(c) = 0$
 $P(c) = (c - c) q(c)$
 $P(c) = 0 \cdot q(c)$

Memorize

Theorem 3.7. Suppose f is a polynomial of degree $n \ge 1$. Then f has at most n real zeros counting multiplicities.

$$S(\chi) = 9\chi - S = 0$$

$$9\chi = S$$

$$\chi = \frac{5}{9}$$

$$dog of S = 1$$

$$S(\chi) = (\chi - \chi)^{2}(\chi^{2} + 1)$$

$$dog of f = 4$$

$$2 - \cos 2$$

$$mult = 2$$

$$2 - \cot 2 \cot 3 \cot 3 multiplicity$$

$$1 \le 4$$

Connections Between Zeros, Factors and Graphs of Polynomial Functions Suppose p is a polynomial function of degree $n \ge 1$. The following statements are equivalent:

- $\bullet\,$ The real number c is a zero of p
- p(c) = 0
- x = c is a solution to the polynomial equation p(x) = 0
- (x-c) is a factor of p(x)
- The point (c,0) is an x-intercept of the graph of y=p(x)

Long division of polynomials

$$(x^{3} + 4x - 10) + (x+6)$$

$$x^{2} - 6x + 40 - \frac{250}{2+6}$$

$$x + 6 \left(x + 0 \cdot x^{2} + 4x - 10\right)$$

$$x + 6 \left(x^{2} + 0 \cdot x^{2} + 4x - 10\right)$$

$$x^{3} + 6 x^{2}$$

$$-6x^{2} + 4x$$

$$-6x^{2} - 36x$$

$$-6x^{2} - 36x$$

$$-6x^{2} - 36x$$

$$-6x^{2} - 36x$$

$$-10$$

$$40x + 240$$

$$-250$$

$$(heck: (x + 6)(x^{2} - 6x + 40 - \frac{250}{x + 6})$$

$$= x^{3} - 6x^{2} + 40x$$

$$6x^{2} - 36x + 240$$

$$+(x + 6)(-\frac{250}{x + 6})$$

$$= x^{3} + 4x + 140 - 250$$

$$= x^{3} + 4x - 10$$

$$p(x) = d(x)q(x) + v(x)$$

$$x^{2} + 4x - 10 = (x + 6)(x^{2} - 6x + 40) - 250$$

Synthetic division only applies with linear divisors

$$\left(x^3+4x-10\right)+\left(x+6\right)$$

 $\frac{x^{3}+4x-10}{2+10} = x^{2}-6x+40-\frac{250}{2+6}$

3.2 In Exercises 1 - 6, use polynomial long division to perform the indicated division. Write the polynomial in the form p(x) = d(x)q(x) + r(x).

4.
$$(-x^{5} + 7x^{3} - x) \div (x^{3} - x^{2} + 1)$$

$$-x^{2} - x + 6 + \frac{7x^{2} - 6}{x^{3} - x^{2} + 1}$$

$$-x^{5} + 0x^{4} + 7x^{3} + 0x^{2} - x + 0$$

$$-x^{5} + x^{4} + 0x^{3} - x^{2} + 0x$$

$$-x^{4} + x^{3} - x^{2} - x$$

$$-x^{4} + x^{3} - x^{2} - x$$

$$-x^{4} + x^{3} - x^{2} - x$$

$$\frac{-x^{2} + x^{3} - x^{2} + x^{3} - x}{\frac{6x^{3} + x^{2}}{6x^{3} - 6x^{3} + 6}}$$

$$-x^{5} + 7x^{3} - x = (x^{3} - x^{3} + 1)(-x^{2} - x + 6) + 7x^{3} - 6$$

3.2

In Exercises 31 - 40, you are given a polynomial and one of its zeros. Use the techniques in this section to find the rest of the real zeros and factor the polynomial.

34.
$$2x^3 - 3x^2 - 11x + 6$$
, $c = \frac{1}{2}$
 $2x^3 - 3x^2 - 11x + 6 = (x - \frac{1}{2}) f(x)$

Use synthetic division to find $f(x)$

$$\frac{1}{2} \left(\frac{2}{2} - \frac{3}{2} - \frac{11}{2} - \frac{6}{2} \right)$$

$$\frac{1}{2} \left(\frac{2}{2} - \frac{3}{2} - \frac{11}{2} - \frac{6}{2} \right)$$

$$\frac{1}{2} \left(\frac{2}{2} - \frac{3}{2} - \frac{11}{2} - \frac{11}{2}$$

3 :

In Exercises 41 - 45, create a polynomial p which has the desired characteristics. You may leave the polynomial in factored form.

- 44. The solutions to p(x) = 0 are $x = \pm 3$, x = -2, and x = 4.
 - The leading term of p(x) is $-x^5$.
 - The point (-2,0) is a local maximum on the graph of y=p(x).

$$p(x) = a(x-3)(x+3)(x+1)(x-4)$$

$$a = constant < 0$$

$$i multiplicate multiplicate
$$= -x^{5} = a \cdot x^{5} \implies G = -1$$$$

$$| (x) = -(x-3)(x+3)(x+2)^{2}(x-4)$$

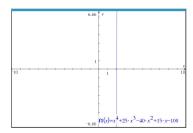
 $p(x) = -(x-3)(x+3)(x+2)^{2}(x-4)$

3.3 supplied

Theorem 3.8. Cauchy's Bound: Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is a polynomial of degree n with $n \ge 1$. Let M be the largest of the numbers: $\frac{|a_0|}{|a_n|}, \frac{|a_1|}{|a_n|}, \dots, \frac{|a_{n-1}|}{|a_n|}$ Then all the real zeros of f lie in in the interval [-(M+1), M+1].

What is a practical application of Cauchy's Bound Theorem to our

We can use this theorem to set our calculator window to include



$$a_{n} = a_{4} = 1$$

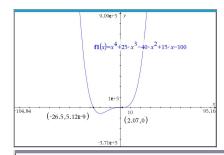
$$a_{3} = 25$$

$$a_{1} = -40$$

$$a_{1} = 15$$

$$a_{0} = -10^{6}$$

 $q_3 = 25$ $q_3 = 25$ $q_1 = -40$ $q_1 = 15$ $q_0 = -10^6$ $q_0 = -10^6$ $q_0 = -10^6$ $q_0 = -10^6$ $q_0 = -10^6$ =) all real zerd are (-100,100)



solve
$$(x^4 + 25 \cdot x^3 - 40 \cdot x^2 + 15 \cdot x - 100 = 0, x)$$

x=-26.5341 or x=2.07117

 $cSolve(x^4+25 \cdot x^3-40 \cdot x^2+15 \cdot x-100=0 \cdot x)$

 $x=-0.268512+1.32194 \cdot i$ or $x=-0.268512-1.32194 \cdot i$ or x=-26.5341 or x=2.07117

Supplied

Theorem 3.9. Rational Zeros Theorem: Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is a polynomial of degree n with $n \geq 1$, and $a_0, a_1, \ldots a_n$ are integers. If r is a rational zero of f, then r is of the form $\pm \frac{p}{a}$, where p is a factor of the constant term a_0 , and q is a factor of the leading coefficient a_n .

$$\mathcal{H}(x) = (3x - 1)(x + 4)(x^{2} - 1)$$

$$= (3x^{2} + 11x - x - 4)(x^{2} - 1)$$

$$= 3x^{4} - 6x^{2} + 11x^{3} - 24x - x^{3} + 2x - 14x^{2} + 8$$

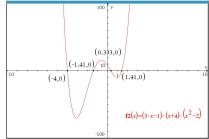
$$5h) = 3x^{4} + 11x^{3} - 10x^{2} - 22x + 8$$

$$a|b| megn| a divides b, or a is a factor of b$$

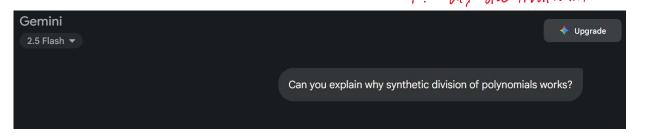
alb mean a divides b, or a is a factor of b

If $r = \frac{p}{q}$ is a rational zero of flood

Then $p \mid 8$ and $q \mid 3$ $p = \pm 1$, ± 2 , ± 4 , ± 8 $q = \pm 1$, ± 3 $p = \pm 1$, ± 3



From graph $\chi \approx -4, -1.41, 0.313, 1.41$ $\chi = -4, \quad | \text{ are not in the list of possible tational zerol}$ They are irvational



Show thinking >

Synthetic division is a **shorthand method** for polynomial long division, designed specifically for the case when the divisor is a **linear binomial** of the form (x-c). Its effectiveness stems from the fact that it automates and simplifies the repetitive steps in long division by focusing only on the coefficients.

Here's a breakdown of why it works:

1. Coefficient Only

Polynomial long division involves a lot of writing out variables and powers of x. Since you are dividing by a linear term, the power of x in each term of the quotient is always one less than the corresponding power in the dividend.

• Synthetic division eliminates the need to write the variables $(x^n, x^{n-1}, \text{ etc.})$, focusing only on the **coefficients** of the terms in the polynomial. The position of each number automatically indicates the power of x it corresponds to.

2. Simplified Subtraction

In polynomial long division, a key step is multiplying a term in the quotient by the divisor and then **subtracting** the result from the dividend. This subtraction often leads to sign errors.

- Synthetic division uses the **root** (c) of the divisor (x-c), instead of the divisor itself. If you set x-c=0, you get x=c.
- By using c (instead of -c) for the multiplication step, the process naturally incorporates the necessary sign change, allowing all subsequent operations to be **addition** instead of subtraction. This simplifies the arithmetic and reduces errors.

3. Connection to the Remainder Theorem

The process of synthetic division is also mathematically equivalent to **Horner's method** for evaluating a polynomial, which is closely tied to the **Remainder Theorem**.

• The **Division Algorithm** for polynomials states that when a polynomial P(x) is divided by a divisor D(x), we get a quotient Q(x) and a remainder R(x) such that:

$$P(x) = D(x) \cdot Q(x) + R(x)$$

• If the divisor is D(x)=x-c, this becomes:

$$P(x) = (x - c) \cdot Q(x) + R$$

(The remainder R is a constant because the divisor is degree 1). ${\mathscr O}$

• The **Remainder Theorem** states that P(c)=R. If you plug c into the equation above:

8

$$P(c) = (c-c)\cdot Q(c) + R$$

$$P(c) = (0) \cdot Q(c) + R$$

$$P(c) = R$$

• Synthetic division, by using c and the steps of multiply-and-add, essentially **calculates** P(c). Therefore, the final number (the remainder) generated by the synthetic division process is the value of the polynomial at x=c, and the preceding numbers are the coefficients of the quotient. If the remainder is zero, the **Factor Theorem** tells us that (x-c) is a factor of the polynomial.

The fundamental reason synthetic division works is that it is a **condensed and optimized version of polynomial long division** when the divisor is a monic linear factor.

You can learn more about this by watching Why synthetic division works.