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1.3:39

In Exercises 33 - 47, determine whether or not the equation represents y as a function of z.
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Function Arithmetic

Suppose f and g are functions and z is in both the domain of f and the domain of g.¢
e The sum of f and ¢, denoted f + g, is the function defined by the formula
(f +9)(z) = f(z) + 9(x)
e The difference of f and g, denoted f — g, is the function defined by the formula
(f —9)(x) = f(z) —g(x)
e The product of f and g, denoted fg, is the function defined by the formula

(f9)(x) = f(x)g(x)

e The quotient of f and g, denoted i, is the function defined by the formula
g

()@=

provided g(x) # 0.

“Thus x is an element of the intersection of the two domains.
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Definition 1.8. Given a function f, the difference quotient of f is the expression
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Summary of Common Economic Functions

Suppose = represents the quantity of items produced and sold.

The price-demand function p(z) calculates the price per item.

The revenue function R(z) calculates the total money collected by selling z items at a
price p(z), R(z) = xp(z).

The cost function C(z) calculates the cost to produce z items. The value C(0) is called
the fixed cost or start-up cost.

The average cost function C(z) = €@ calculates the cost per item when making z items.

x
Here, we necessarily assume z > 0.

The profit function P(z) calculates the money earned after costs are paid when z items
are produced and sold, P(z) = (R — C)(z) = R(z) — C(z).

1.6

Memorize

The graph of a function f is the set of points which satisfy the equation y = f(z). That is, the
point (z,y) is on the graph of f if and only if y = f(z).

The Fundamental Graphing Principle for Functions
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Piecewise-defined function
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Definition 1.9. The zeros of a function f are the solutions to the equation f(z) = 0. In other
words, z is a zero of f if and only if (z,0) is an z-intercept of the graph of y = f(x).
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Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

eviv
e about the y-axis if and only if f(—z) = fjm) for all z in the domain of f.
o

e about the origin if and only if f(—x f(z) for all z in the domain of f.
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