11.3 The Law of Cosines

11.3.1 Exercises

page 916 (928): 1, 7, 11, 19

11.4 Polar Coordinates

11.4.1 Exercises

page 930 (942): 2, 11, 17, 19, 22, 37, 57, 64, 72, 85

11.5 Graphs of Polar Equations

11.5.1 Exercises

page 958 (972): 1, 3, 9, 21, 32

11.8 Vectors

11.8.1 Exercises

page 1027 (1039): 1, 11, 29, 33, 53

11.9 The Dot Product and Projection

11.9.1 Exercises

page 1045 (1067): 1, 21

8 Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

8.1.1 Exercises

page 562: 5, 10, 11, 16, 28

8.2 Systems of Linear Equations: Augmented Matrices

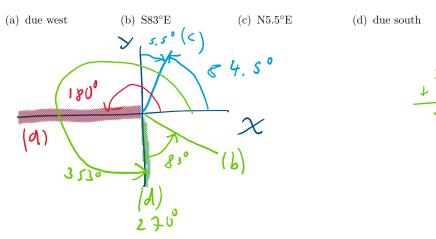
8.2.1 Exercises

page 574: 1, 2, 3, 7, 9, 14, 15, 18

11.2

Before class notes

25. Find the angle θ in standard position with $0^{\circ} \leq \theta < 360^{\circ}$ which corresponds to each of the bearings given below.



11.4: 64

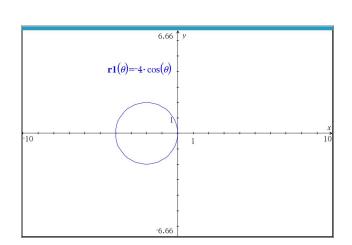
In Exercises 57 - 76, convert the equation from rectangular coordinates into polar coordinates. Solve for r in all but #60 through #63. In Exercises 60 - 63, you need to solve for θ

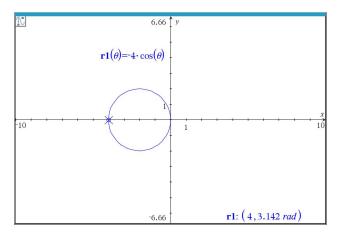
64. $x^2 + y^2 = 25$

This is the equation of a circle with center (0,0) and radius 5.

 $\chi = r \cos \theta$ $\chi = r \sin \theta$ $\chi = r \sin \theta$ $\chi = r \cos^2 \theta + r^2 \sin^2 \theta = s^2$ $\chi = r^2 (\cos^2 \theta + \sin^2 \theta) = s^2$ $\chi = r^2 (\sin^2 \theta + \sin^2 \theta) = s^2$

74.
$$(x+2)^2+y^2=4$$
 $(r \cot \theta + 2)^2 + (r \cot \theta + 4)^2 = 4$
 $(r \cot \theta + 2)^2 + (r \cot \theta + 4) + r^2 \sin^2 \theta = 4$
 $r^2 \cot^2 \theta + r^2 \sin^2 \theta + 4r \cot \theta = 0$
 $r^2 (\cot^2 \theta + \sin^2 \theta) + 4r \cot \theta = 0$
 $r^2 (\cot^2 \theta + \sin^2 \theta) + 4r \cot \theta = 0$
 $r^2 + 4r \cot \theta = 0$



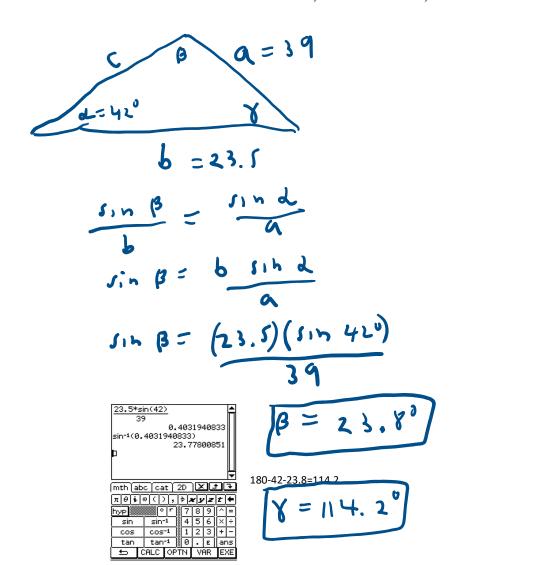


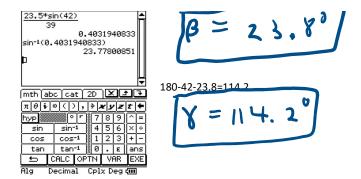
11.2

11.2.1 Exercises

In Exercises 1 - 20, solve for the remaining side(s) and angle(s) if possible. As in the text, (α, a) , (β, b) and (γ, c) are angle-side opposite pairs.

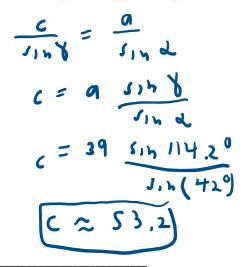
11.
$$\alpha = 42^{\circ}, \ a = 39, \ b = 23.5$$





Textbook answer:

11.
$$\begin{array}{cccc} \alpha = 42^{\circ} & \beta \approx 23.78^{\circ} & \gamma \approx 114.22^{\circ} \\ a = 39 & b = 23.5 & c \approx 53.15 \end{array}$$



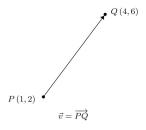
39*sin(114.2)/sin(42) 53.16254285

11.8 Memorize

Definition 11.5. Suppose \vec{v} is represented by a directed line segment with initial point $P\left(x_0,y_0\right)$ and terminal point $Q\left(x_1,y_1\right)$. The **component form** of \vec{v} is given by

$$\vec{v} = \overrightarrow{PQ} = \langle x_1 - x_0, y_1 - y_0 \rangle$$

We can think of a vector as an object that has magnitude and direction.



Memorize

Definition 11.5. Suppose \vec{v} is represented by a directed line segment with initial point $P\left(x_0,y_0\right)$ and terminal point $Q\left(x_1,y_1\right)$. The **component form** of \vec{v} is given by

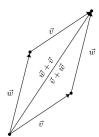
$$\overrightarrow{v} = \overrightarrow{PQ} = \langle x_1 - x_0, y_1 - y_0 \rangle$$



Memorize

Definition 11.6. Suppose $\vec{v} = \langle v_1, v_2 \rangle$ and $\vec{w} = \langle w_1, w_2 \rangle$. The vector $\vec{v} + \vec{w}$ is defined by

$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$



Demonstrating the commutative property of vector addition.

Memorize

Theorem 11.18. Properties of Vector Addition

- Commutative Property: For all vectors \vec{v} and \vec{w} , $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.
- Associative Property: For all vectors \vec{u}, \vec{v} and $\vec{w}, (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.
- Identity Property: The vector $\vec{0}$ acts as the additive identity for vector addition. That is, for all vectors \vec{n}

$$\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}.$$

• Inverse Property: Every vector \vec{v} has a unique additive inverse, denoted $-\vec{v}$. That is, for every vector \vec{v} , there is a vector $-\vec{v}$ so that

$$\vec{v} + (-\vec{v}) = (-\vec{v}) + \vec{v} = \vec{0}.$$

memorize

Definition 11.7. If k is a real number and $\vec{v} = \langle v_1, v_2 \rangle$, we define $k\vec{v}$ by

$$k\vec{v}=k\left\langle v_{1},v_{2}\right\rangle =\left\langle kv_{1},kv_{2}\right\rangle$$

$$V + 0 = \langle V_{1}, V_{2} \rangle + \langle 0, 0 \rangle$$

$$= \langle V_{1} + 0, V_{2} + 0 \rangle$$

$$= \langle V_{1}, V_{2} \rangle = \vec{V}$$

$$-\vec{V} = -\langle V_{1}, V_{2} \rangle = \langle -V_{1}, -V_{2} \rangle$$

Memorize

Theorem 11.19. Properties of Scalar Multiplication

- Associative Property: For every vector \vec{v} and scalars k and r, $(kr)\vec{v} = k(r\vec{v})$.
- Identity Property: For all vectors \vec{v} , $1\vec{v} = \vec{v}$.
- Additive Inverse Property: For all vectors \vec{v} , $-\vec{v} = (-1)\vec{v}$.
- Distributive Property of Scalar Multiplication over Scalar Addition: For every vector \vec{v} and scalars k and r,

$$(k+r)\vec{v} = k\vec{v} + r\vec{v}$$

$$k(\vec{v}+\vec{w})=k\vec{v}+k\vec{w}$$

• Zero Product Property: If \vec{v} is vector and k is a scalar, then

$$L\vec{n} = \vec{0}$$
 if and only if $L = 0$ on $\vec{n} = \vec{0}$

$$k(\vec{v} + \vec{w}) = k\vec{v} + k\vec{w}$$

$$k\vec{v} = \vec{0}$$
 if and only if $k = 0$ or $\vec{v} = \vec{0}$

Prove
$$k \vec{y} = \vec{0}$$
 iff $k = 0$ or $\vec{V} = 0$

Assume $k \vec{V} = \vec{0}$

Let $\vec{V} = \langle V_1, V_2 \rangle$
 $k \vec{V} = \langle k V_1, k V_2 \rangle = \langle 0, 0 \rangle$
 $\Rightarrow k V_1 = 0$ and $k V_2 = 0$
 $\{k = 0 \text{ or } V_1 = 0\}$ and $\{k = 0 \text{ or } V_2 = 0\}$

If $k = 0$, we are done

If $k \neq 0$, $k V_1 = 0 \Rightarrow V_2 = 0$
 $k V_2 = 0 \Rightarrow V_2 = 0$

The converse is easy

Memorize

Definition 11.8. Suppose \vec{v} is a vector with component form $\vec{v} = \langle v_1, v_2 \rangle$. Let (r, θ) be a polar representation of the point with rectangular coordinates (v_1, v_2) with $r \geq 0$.

- The magnitude of \vec{v} , denoted $\|\vec{v}\|$, is given by $\|\vec{v}\| = r = \sqrt{v_1^2 + v_2^2}$
- If $\vec{v} \neq \vec{0}$, the (vector) direction of \vec{v} , denoted \hat{v} is given by $\hat{v} = \langle \cos(\theta), \sin(\theta) \rangle$

Taken together, we get $\vec{v} = \langle ||\vec{v}|| \cos(\theta), ||\vec{v}|| \sin(\theta) \rangle$.

Memorize

Theorem 11.20. Properties of Magnitude and Direction: Suppose \vec{v} is a vector.

- $\|\vec{v}\| \ge 0$ and $\|\vec{v}\| = 0$ if and only if $\vec{v} = \vec{0}$
- For all scalars k, $||k \vec{v}|| = |k| ||\vec{v}||$.
- If $\vec{v} \neq \vec{0}$ then $\vec{v} = ||\vec{v}||\hat{v}$, so that $\hat{v} = \begin{pmatrix} \frac{1}{||\vec{v}||} \end{pmatrix} \vec{v}$.

Let
$$\vec{V} = \langle 1, 2 \rangle$$

 $\vec{V} = \langle 1, 2 \rangle$
 $\vec{V} = \langle 1, 2 \rangle$

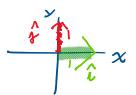
Memorize

Definition 11.9. Unit Vectors: Let \vec{v} be a vector. If $||\vec{v}|| = 1$, we say that \vec{v} is a unit vector.

Memorize

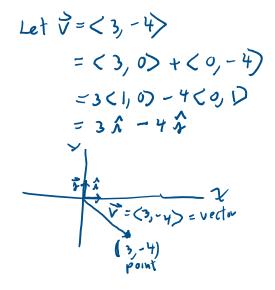
Definition 11.10. The Principal Unit Vectors:

- The vector \hat{i} is defined by $\hat{i} = \langle 1, 0 \rangle$
- The vector \hat{j} is defined by $(\hat{i}) = \langle 0, 1 \rangle$



Memorize

Theorem 11.21. Principal Vector Decomposition Theorem: Let \vec{v} be a vector with component form $\vec{v} = \langle v_1, v_2 \rangle$. Then $\vec{v} = v_1 \hat{\imath} + v_2 \hat{\jmath}$.



11.9

Memorize

Definition 11.11. Suppose \vec{v} and \vec{w} are vectors whose component forms are $\vec{v} = \langle v_1, v_2 \rangle$ and $\vec{w} = \langle w_1, w_2 \rangle$. The **dot product** of \vec{v} and \vec{w} is given by

$$\vec{v}\cdot\vec{w} = \langle v_1,v_2\rangle\cdot\langle w_1,w_2\rangle = v_1w_1 + v_2w_2$$

Let
$$\vec{V} = \langle S, 2 \rangle$$

 $\vec{w} = \langle 6, 3 \rangle$
 $\vec{V} \cdot \vec{w} = |S|(6) + |2|(3) = 30 + 6 = 36$

Memorize

Theorem 11.22. Properties of the Dot Product

- Commutative Property: For all vectors \vec{v} and \vec{w} , $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$.
- Distributive Property: For all vectors \vec{u} , \vec{v} and \vec{w} , $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- Scalar Property: For all vectors \vec{v} and \vec{w} and scalars k, $(k\vec{v}) \cdot \vec{w} = k(\vec{v} \cdot \vec{w}) = \vec{v} \cdot (k\vec{w})$.
- Relation to Magnitude: For all vectors \vec{v} , $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$.

Proof of commutative property

Let
$$\vec{V} = \langle V_1, V_2 \rangle$$

 $\vec{w} = \langle W_1, W_2 \rangle$
 $\vec{v} \cdot \vec{w} = \langle V_1, V_2 \rangle \cdot \langle W_1, W_2 \rangle$
 $= V_1 W_1 + V_2 W_2$ (by commutative project)
 $= W_1 V_1 + W_2 V_2$ (by commutative project)
of multi-of real numbers)

$$= V_1 W_1 + V_2 W_2 \quad (b) \ def \ of \ an \ provinc)$$

$$= W_1 V_1 + W_2 V_2 \quad (by \ com \ multiple \ provinc)$$

$$= W_1 V_1 + W_2 V_2 \quad (by \ def \ of \ dut \ provinc)$$

$$= W_1 V_2 \quad (by \ def \ of \ dut \ provinc)$$

$$= V_1 V_2 V_2 V_3 V_4 V_2 V_4 V_4 V_4 V_5 V_6$$

$$= V_1^2 + V_2^2$$

$$= || \overrightarrow{V}||^2$$

Memorize

Theorem 11.23. Geometric Interpretation of Dot Product: If \vec{v} and \vec{w} are nonzero vectors then $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$, where θ is the angle between \vec{v} and \vec{w} .

Memorize

Theorem 11.24. Let \vec{v} and \vec{w} be nonzero vectors and let θ the angle between \vec{v} and \vec{w} . Then

$$\theta = \arccos\left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}\right) = \arccos(\hat{v} \cdot \hat{w})$$

Memorize

Theorem 11.25. The Dot Product Detects Orthogonality: Let \vec{v} and \vec{w} be nonzero vectors. Then $\vec{v} \perp \vec{w}$ if and only if $\vec{v} \cdot \vec{w} = 0$.

Supplied

Definition 11.12. Let \vec{v} and \vec{w} be nonzero vectors. The **orthogonal projection of** \vec{v} **onto** \vec{w} , denoted $\operatorname{proj}_{\vec{w}}(\vec{v})$ is given by $\operatorname{proj}_{\vec{w}}(\vec{v}) = (\vec{v} \cdot \hat{w})\hat{w}$.

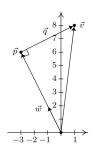
Supplied

Theorem 11.26. Alternate Formulas for Vector Projections: If \vec{v} and \vec{w} are nonzero vectors then

$$\mathrm{proj}_{\vec{w}}(\vec{v}) = (\vec{v} \cdot \hat{w}) \hat{w} = \left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^2}\right) \vec{w} = \left(\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$$

Example 11.9.4. Let $\vec{v}=\langle 1,8\rangle$ and $\vec{w}=\langle -1,2\rangle$. Find $\vec{p}=\mathrm{proj}_{\vec{w}}(\vec{v})$, and plot $\vec{v},$ \vec{w} and \vec{p} in standard position.

Solution. We find $\vec{v} \cdot \vec{w} = \langle 1, 8 \rangle \cdot \langle -1, 2 \rangle = (-1) + 16 = 15$ and $\vec{w} \cdot \vec{w} = \langle -1, 2 \rangle \cdot \langle -1, 2 \rangle = 1 + 4 = 5$. Hence, $\vec{p} = \frac{\vec{w} \cdot \vec{w}}{2m} \vec{w} = \frac{15}{5} \langle -1, 2 \rangle = \langle -3, 6 \rangle$. We plot \vec{v} , \vec{w} and \vec{p} below.



supplied

Theorem 11.27. Generalized Decomposition Theorem: Let \vec{v} and \vec{w} be nonzero vectors. There are unique vectors \vec{p} and \vec{q} such that $\vec{v} = \vec{p} + \vec{q}$ where $\vec{p} = k\vec{w}$ for some scalar k, and

Supplied

Theorem 11.28. Work as a Dot Product: Suppose a constant force \vec{F} is applied along the vector \overrightarrow{PQ} . The work W done by \overrightarrow{F} is given by

$$W = \vec{F} \cdot \overrightarrow{PQ} = \|\vec{F}\| \|\overrightarrow{PQ}\| \cos(\theta),$$

where θ is the angle between \vec{F} and \overrightarrow{PQ} .

Solve the system of linear equations 2x + y = 3Substitution, elimination 2x - y = 1 3x = y + 18.1

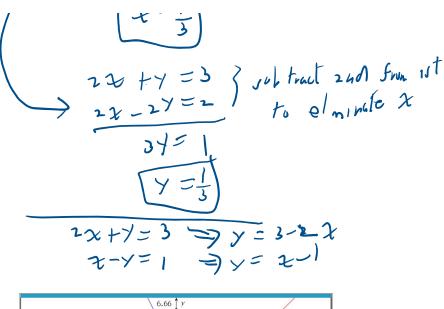
$$\int_{-\infty}^{\infty} x = y + 1$$

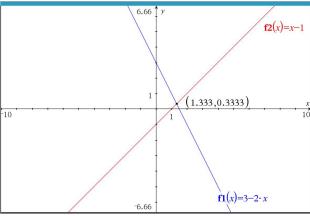
substitute
$$2(y+1)+y=3$$

 $2y+2+y=3$

$$\frac{2x + y = 3}{x - y = 1}$$
 Add the equations to eliminate $x = 3$

L





8.1 Memorize

Theorem 8.1. Given a system of equations, the following moves will result in an equivalent system of equations.

- Interchange the position of any two equations.
- ullet Replace an equation with a nonzero multiple of itself.^a
- $\bullet\,$ Replace an equation with itself plus a nonzero multiple of another equation.

^aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

Showed how to compute rref on TI.