11-20-25 MTH 167-002N

10.5 Graphs of the Trigonometric Functions

10.5.4 Exercises

page 809 (821): 2, 8, 13, 25

10.6 The Inverse Trigonometric Functions

10.6.5 Exercises

page 841 (852): 1, 16, 25, 41, 57, 66, 89, 185, 216

10.7 Trigonometric Equations and Inequalities

10.7.1 Exercises

page 874 (886): 1, 8, 26, 39, 62, 69, 73

11 Applications of Trigonometry

11.1 Applications of Sinusoids

11.1.2 Exercises

page 891 (903):1, 2, 3

11.2 The Law of Sines

11.2.1 Exercises

page 904 (916): 1, 3, 25, 26

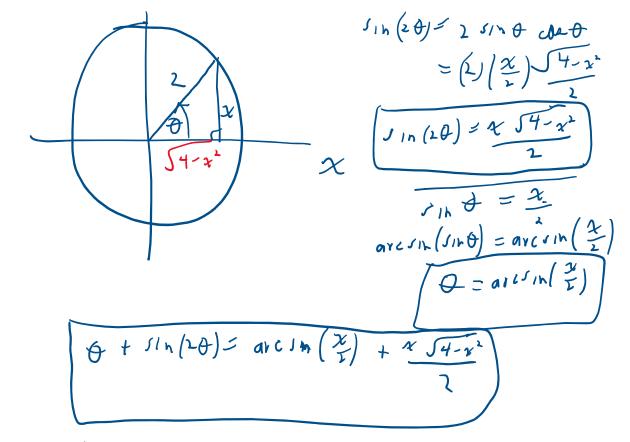
10 textbook sections

5 class meetings before final exam

2-3 sections/class + 1 day of review

10.6: 185

185. If $\sin(\theta) = \frac{x}{2}$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, find an expression for $\theta + \sin(2\theta)$ in terms of x.



Copilot

To find an expression for $\theta+\sin(2\theta)$ in terms of x, given that $\sin(\theta)=\frac{x}{2}$ and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, we can proceed as follows:

Step-by-step Derivation

1. Use the identity for $\sin(2\theta)$:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

We already know:

$$\sin(\theta) = \frac{x}{2}$$

2. Find $\cos(\theta)$ using the Pythagorean identity:

$$\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{x}{2}\right)^2} = \sqrt{1 - \frac{x^2}{4}} = \frac{\sqrt{4 - x^2}}{2}$$

Since $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\cos(\theta)$ is non-negative.

3. Substitute into $\sin(2\theta)$:

$$\sin(2\theta) = 2 \cdot \frac{x}{2} \cdot \frac{\sqrt{4-x^2}}{2} = \frac{x\sqrt{4-x^2}}{2}$$

4. Now express θ in terms of x:

$$\theta = \arcsin\left(\frac{x}{2}\right)$$

5. Final expression:

5. Final expression:

$$\theta + \sin(2\theta) = \arcsin\left(\frac{x}{2}\right) + \frac{x\sqrt{4 - x^2}}{2}$$

>

Final Answer

10.7

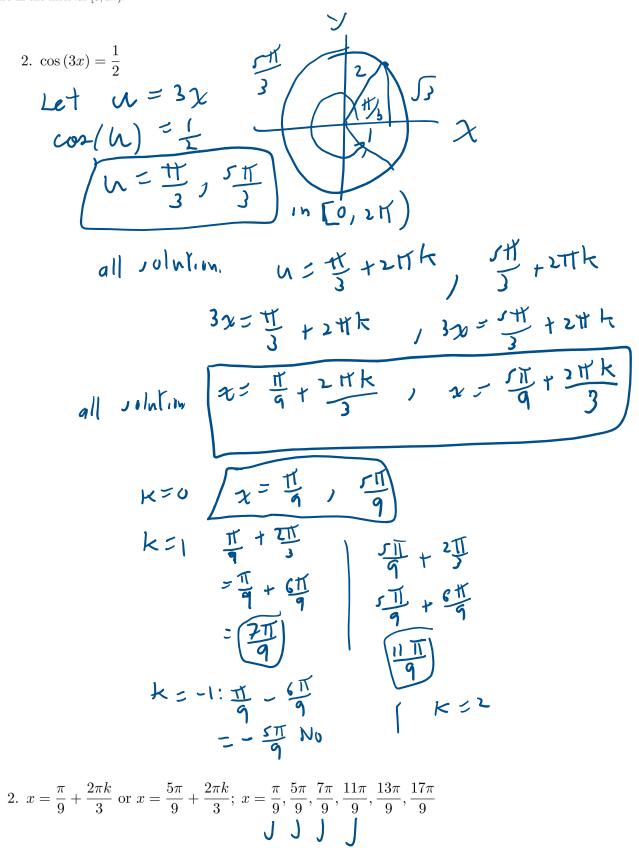
supplied

Strategies for Solving Basic Equations Involving Trigonometric Functions

- To solve $\cos(u) = c$ or $\sin(u) = c$ for $-1 \le c \le 1$, first solve for u in the interval $[0, 2\pi)$ and add integer multiples of the period 2π . If c < -1 or of c > 1, there are no real solutions.
- To solve $\sec(u) = c$ or $\csc(u) = c$ for $c \le -1$ or $c \ge 1$, convert to cosine or sine, respectively, and solve as above. If -1 < c < 1, there are no real solutions.
- To solve $\tan(u) = c$ for any real number c, first solve for u in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and add integer multiples of the period π .
- To solve $\cot(u) = c$ for $c \neq 0$, convert to tangent and solve as above. If c = 0, the solution to $\cot(u) = 0$ is $u = \frac{\pi}{2} + \pi k$ for integers k.

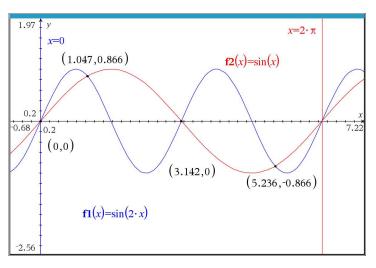
10.7.1 Exercises

In Exercises 1 - 18, find <u>all</u> of the exact solutions of the equation and then list those solutions which are in the interval $[0, 2\pi)$.



In Exercises 19 - 42, solve the equation, giving the exact solutions which lie in $[0, 2\pi)$

$$20. \sin(2x) = \sin(x)$$



2
$$SIN \times UOO \times = SIN \times$$
2 $SIN \times UOO \times = SIN \times = 0$

$$(JIN \times) (2UO \times 2 - 1) = 0$$

$$JIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN \times = 0 \quad 0V \quad 2UO \times 4 - 1 = 0$$

$$VIN$$

11.1 supplied (already given previously)

Properties of the Sinusoid $S(t) = A\sin(\omega t + \phi) + B$

- The amplitude is |A|
- The angular frequency is ω and the ordinary frequency is $f = \frac{\omega}{2\pi}$
- The **period** is $T = \frac{1}{f} = \frac{2\pi}{\omega}$
- The **phase** is ϕ and the **phase shift** is $-\frac{\phi}{\omega}$
- The vertical shift or baseline is B

Properties of the Sinusoid $S(t) = A\sin(\omega t + \phi) + B$

- The amplitude is |A|
- The angular frequency is ω and the ordinary frequency is $f = \frac{\omega}{2\pi}$
- The **period** is $T = \frac{1}{f} = \frac{2\pi}{\omega}$
- The **phase** is ϕ and the **phase shift** is $-\frac{\phi}{\omega}$
- \bullet The vertical shift or baseline is B

Supplied

Theorem 11.1. Equation for Free Undamped Harmonic Motion: Suppose an object of mass m is suspended from a spring with spring constant k. If the initial displacement from the equilibrium position is x_0 and the initial velocity of the object is v_0 , then the displacement x from the equilibrium position at time t is given by $x(t) = A\sin(\omega t + \phi)$ where

•
$$\omega = \sqrt{\frac{k}{m}}$$
 and $A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$

- $A\sin(\phi) = x_0$ and $A\omega\cos(\phi) = v_0$.
- 6. Suppose an object weighing 10 pounds is suspended from the ceiling by a spring which stretches 2 feet to its equilibrium position when the object is attached.
 - (a) Find the spring constant k in $\frac{\text{lbs.}}{\text{ft.}}$ and the mass of the object in slugs.
 - (b) Find the equation of motion of the object if it is released from 1 foot *below* the equilibrium position from rest. When is the first time the object passes through the equilibrium position? In which direction is it heading?
 - (c) Find the equation of motion of the object if it is released from 6 inches *above* the equilibrium position with a *downward* velocity of 2 feet per second. Find when the object passes through the equilibrium position heading downwards for the third time.

Hooke's Lan
$$F = K \times K$$

Force = K (displacement)

 $W = \frac{K}{m}$
 $W = \frac{M}{m}$
 $W = \frac{M}{m}$

Follow textbook example to finish this.

11.2 memorize

Theorem 11.2. The Law of Sines: Given a triangle with angle-side opposite pairs (α, a) , (β, b) and (γ, c) , the following ratios hold

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

or, equivalently,

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Do the same for the third triangle to complete the

theorem.

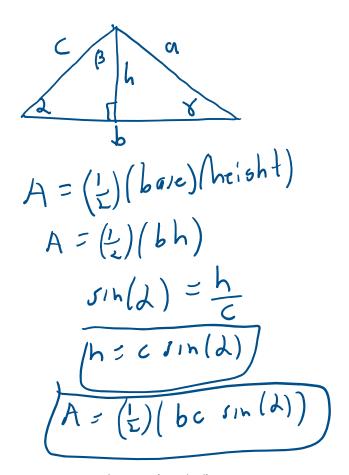
supplied

Theorem 11.3. Suppose (α, a) and (γ, c) are intended to be angle-side pairs in a triangle where α , a and c are given. Let $h = c \sin(\alpha)$

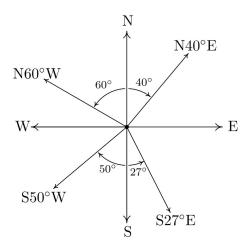
- If a < h, then no triangle exists which satisfies the given criteria.
- If a = h, then $\gamma = 90^{\circ}$ so exactly one (right) triangle exists which satisfies the criteria.
- If h < a < c, then two distinct triangles exist which satisfy the given criteria.
- If $a \ge c$, then γ is acute and exactly one triangle exists which satisfies the given criteria

Theorem 11.4. Suppose (α, a) , (β, b) and (γ, c) are the angle-side opposite pairs of a triangle. Then the area A enclosed by the triangle is given by

$$A = \frac{1}{2}bc\sin(\alpha) = \frac{1}{2}ac\sin(\beta) = \frac{1}{2}ab\sin(\gamma)$$



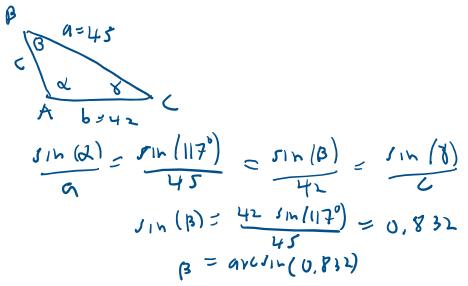
Compass bearings (supplied)



11.2.1 Exercises

In Exercises 1 - 20, solve for the remaining side(s) and angle(s) if possible. As in the text, (α, a) , (β, b) and (γ, c) are angle-side opposite pairs.

6.
$$\alpha = 117^{\circ}, \ a = 45, \ b = 42$$



Finish at home. Check Theorem 11.3 to see how many triangles we have here.