### 10.2 The Unit Circle: Cosine and Sine

10.2.2 Exercises

page 736 (748): 2, 7, 15, 21, 28, 31, 49, 50, 55

### 10.3 The Six Circular Functions and Fundamental Identities

10.3.2 Exercises

page 759 (771): 1, 7, 11, 21, 35, 59, 79, 86, 91, 129

### 10.4 Trigonometric Identities

10.4.1 Exercises

page 782 (794): 3, 14, 22a, 32, 43, 49

10.5 Graphs of the Trigonometric Functions 10.5.4 Exercises

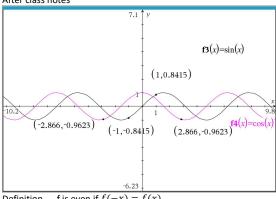
page 809 (821): 2, 8, 13, 25

#### 10.6 The Inverse Trigonometric Functions

10.6.5 Exercises

page 841 (852): 1, 16, 25, 41, 57, 66, 89, 185, 216

## After class notes



Definition f is even if f(-x) = f(x)f is odd if f(-x) = -f(x)

Cos (x) is even Sin(x) is odd

### 10.2: 38

10.2 The Unit Circle: Cosine and Sine

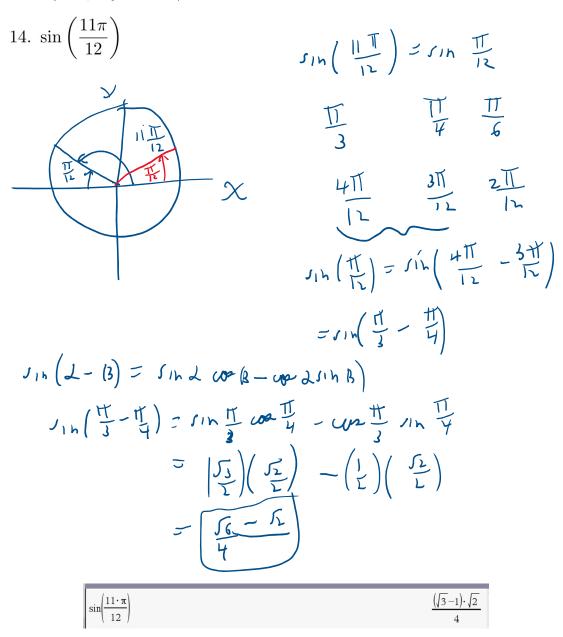
In Exercises 31 - 39, find all of the angles which satisfy the given equation.

38. 
$$\cos(\theta) = \frac{\sqrt{3}}{2}$$



In Exercises 7 - 21, use the Sum and Difference Identities to find the exact value. You may have need of the Quotient, Reciprocal or Even / Odd Identities as well.

In Exercises 7 - 21, use the Sum and Difference Identities to find the exact value. You may have need of the Quotient, Reciprocal or Even / Odd Identities as well.



10.3: 55

In Exercises 43 - 57, find all of the angles which satisfy the equation.

55. 
$$\tan(\theta) = -\sqrt{3}$$



Alright Donald, let's tackle this trig problem step by step.

We're solving:

$$\tan(\theta) = -\sqrt{3}$$

## Step 1: Recall tangent values

- .  $\tan(\theta) = \sqrt{3}$  at 60° ( $\pi$ /3 radians) in the first quadrant.
- Since tangent is **negative**, we're looking at quadrants **II and IV** (because tangent = sine/cosine, and signs differ there).

## 🔎 Step 2: Reference angle

The reference angle is  $60^{\circ}$  (or  $\pi/3$ ).

## Step 3: Apply quadrant rules

- In Quadrant II, tangent is negative  $\rightarrow$  angle =  $180^{\circ} 60^{\circ} = 120^{\circ}$  (or  $2\pi/3$ ).
- In Quadrant IV, tangent is negative  $\rightarrow$  angle =  $360^{\circ} 60^{\circ} = 300^{\circ}$  (or  $5\pi/3$ ).

## Step 4: General solution

Tangent has a period of  $\pi$ . So the general solution is:

$$\theta = \frac{2\pi}{3} + n\pi$$
 or  $\theta = \frac{5\pi}{3} + n\pi$ ,  $n \in \mathbb{Z}$ 

## Final Answer

- In degrees:  $\theta = 120^{\circ} + 180^{\circ} n$  or  $\theta = 300^{\circ} + 180^{\circ} n$ .
- In radians:  $\theta = \frac{2\pi}{3} + n\pi$  or  $\theta = \frac{5\pi}{3} + n\pi$ .

Since you like weaving humor into math, here's a quick mnemonic-style limerick for tangent signs:

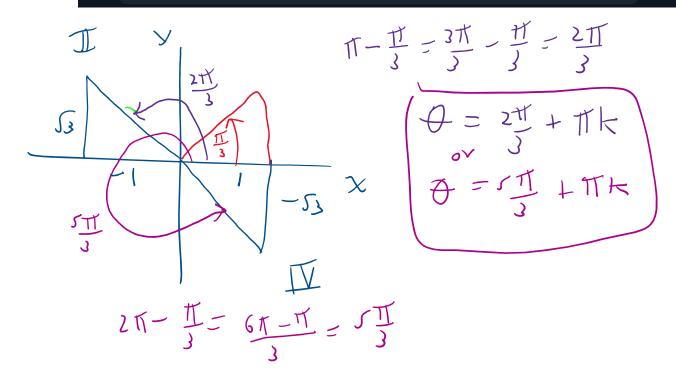
( Copy

In I it's plus, in II it's minus, In III it's plus, in IV decline us. So when tan's negative, Quadrants II and IV give— Angles where slopes don't align us.





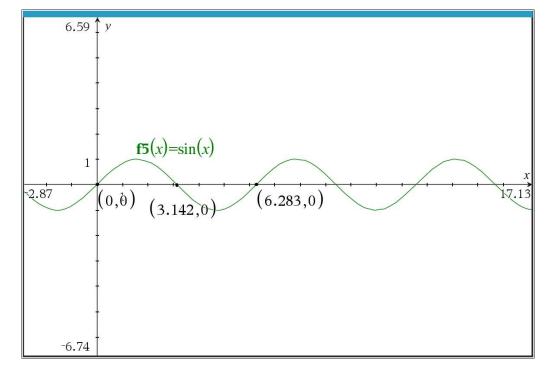
サーゼー3オーザー2丁



10.5 Memorize

**Definition 10.3. Periodic Functions:** A function f is said to be **periodic** if there is a real number c so that f(t+c) = f(t) for all real numbers t in the domain of f. The smallest positive number p for which f(t+p) = f(t) for all real numbers t in the domain of f, if it exists, is called the **period** of f.

# Sin(x) is periodic with period = $2\pi$

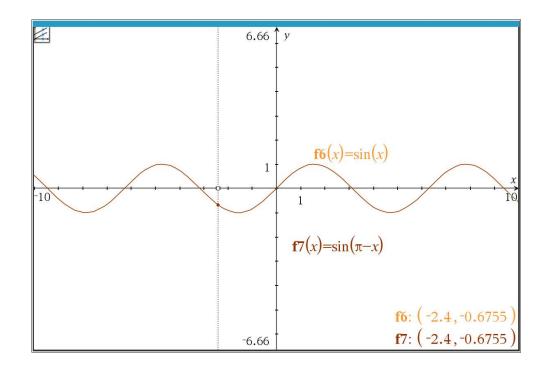


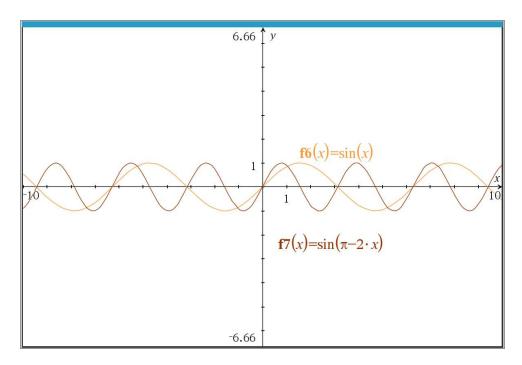
Memorize

## Theorem 10.22. Properties of the Cosine and Sine Functions

- The function  $f(x) = \cos(x)$ 
  - has domain  $(-\infty, \infty)$
  - has range [-1,1]
  - is continuous and smooth
  - is even
  - has period  $2\pi$

- The function  $g(x) = \sin(x)$ 
  - has domain  $(-\infty, \infty)$
  - has range [-1,1]
  - is continuous and smooth
  - is odd
  - has period  $2\pi$





$$Show sin(T-x) = si'n x$$

$$= sin t con x - cont sin x$$

$$= (0) con x - (-1)(sin x)$$

$$= 0 + sin x$$

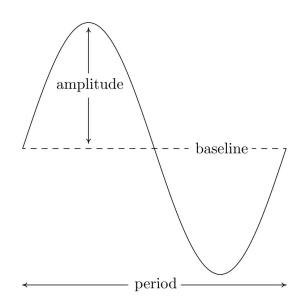
$$= sin x$$

$$= sin x$$

$$(con (tr-0), sin(tr-0))$$

$$= -con 0$$

Memorize



# supplied

**Theorem 10.23.** For  $\omega > 0$ , the functions

$$C(x) = A\cos(\omega x + \phi) + B$$
 and  $S(x) = A\sin(\omega x + \phi) + B$ 

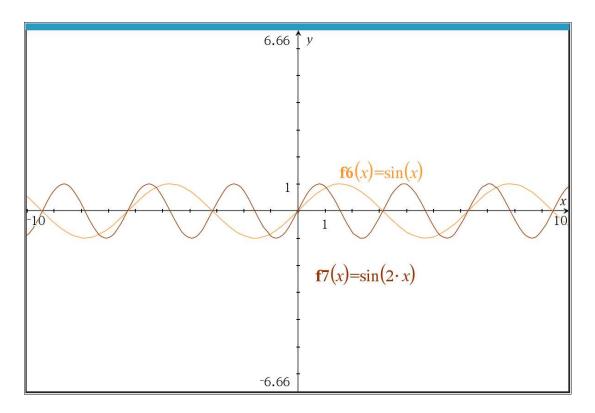
• have period  $\frac{2\pi}{\omega}$ 

• have phase shift  $-\frac{\phi}{\omega}$ 

• have amplitude |A|

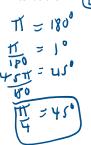
• have vertical shift B

 $\omega = ext{angular frequency} \quad \phi = phase$ 



Your Name MTH 167-002N bonus quiz 2 Write the instructions. No calculator.

1. Convert 45° into radians.

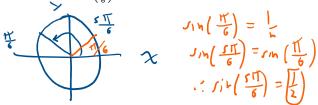


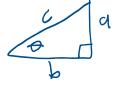
2. Find exact value of  $\sin\left(\frac{5\pi}{6}\right)$ . Make a relevant sketch of a unit circle.



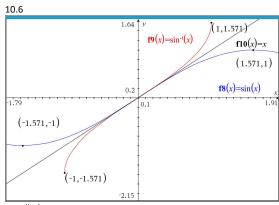
JIH ( H) = 1

2. Find exact value of  $\sin\left(\frac{3n}{6}\right)$ . Make a relevant sketch of a unit circle.





Find the 6 basic trig functions of  $\theta$ .



supplied

Theorem 10.26. Properties of the Arccosine and Arcsine Functions

- Properties of  $F(x) = \arccos(x)$ 
  - Domain: [-1,1]

 $\int$  - Range:  $[0,\pi]$  supplied

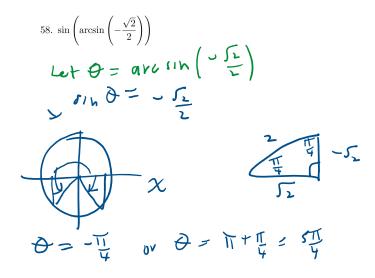
- $\arccos(x) = t$  if and only if  $0 \le t \le \pi$  and  $\cos(t) = x$
- $-\cos(\arccos(x)) = x \text{ provided } -1 \le x \le 1$
- $-\arccos(\cos(x)) = x \text{ provided } 0 \le x \le \pi$
- Properties of  $G(x) = \arcsin(x)$

- $\arcsin(x) = t$  if and only if  $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$  and  $\sin(t) = x$
- $-\sin(\arcsin(x)) = x \text{ provided } -1 \le x \le 1$
- $-\arcsin(\sin(x)) = x \text{ provided } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$
- additionally, arcsine is odd

10.6

In Exercises 57 - 86, find the exact value or state that it is undefined.

59. 
$$\sin\left(\arcsin\left(\frac{3}{5}\right)\right) = \frac{3}{5}$$



61. 
$$\sin\left(\arcsin\left(\frac{5}{4}\right)\right)$$
 is undefined.  
Let  $\Theta = nVC / \ln\left(\frac{5}{4}\right)$   
 $S \ln \Theta = \frac{5}{4} \notin [-1, 1] = r$  angle of  $\sin \Theta$ 

66.  $\cos(\arccos(\pi))$  is undefined.