6.3 Exponential Equations and Inequalities

6.3.1 Exercises

page 456 (468): 1, 11, 19, 36, 40, 44

6.4 Logarithmic Equations and Inequalities

6.4.1 Exercises

page 466 (488): 3, 9, 22, 26, 33

6.5 Applications of Exponential and Logarithmic Functions

6.5.3 Exercises

page 482 (494): 1, 14, 23, 27

7 Hooked on Conics

7.1 Introduction to Conics

7.2 Circles

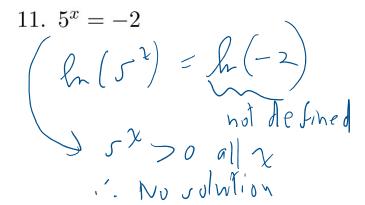
7.2.1 Exercises

page 502 (514): 1, 8, 13

6.3: 11

6.3.1 Exercises

In Exercises 1 - 33, solve the equation analytically.

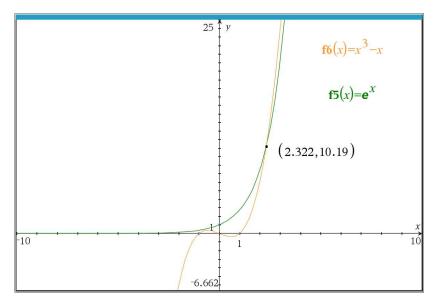


6.3:45

In Exercises 40 - 45, use your calculator to help you solve the equation or inequality.

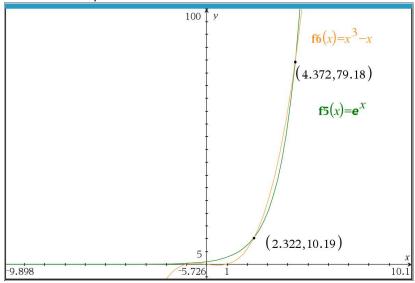
45.
$$e^x < x^3 - x$$

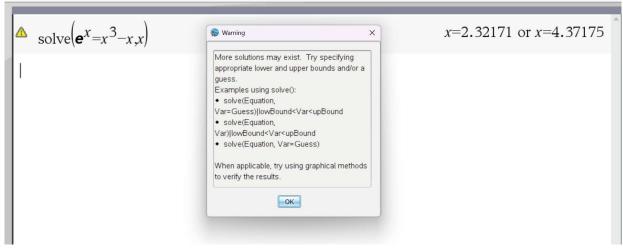
From graph solution set $\approx \{x | x > 2.322\}$



Textbook answer $45. \approx (2.3217, 4.3717)$

We need to expand our window





6.4: 26

In Exercises 25 - 30, solve the inequality analytically.

26.
$$x \ln(x) - x > 0$$

$$x \left(\frac{1}{x} \ln(x) - 1 \right) > 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

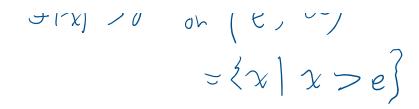
$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

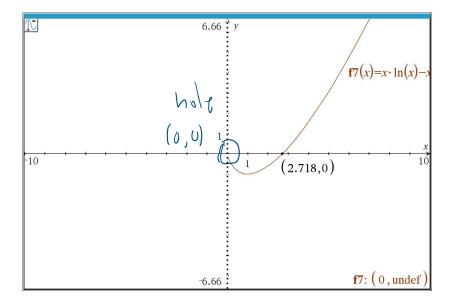
$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad \frac{1}{x} \ln(x) - 1 = 0$$

$$x = 0 \quad \text{ov} \quad$$





x ≈ 2.718 ≈ e

6.4: 33

In Exercises 31 - 34, use your calculator to help you solve the equation or inequality.

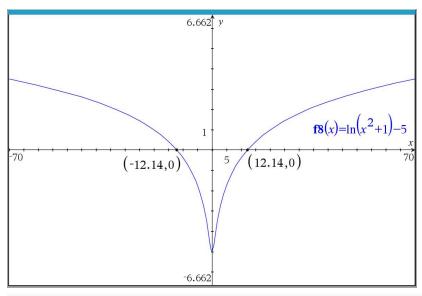
33.
$$\ln(x^2+1) \ge 5$$

$$x^{2}+1 \geq e^{5}$$
 $x^{2}+1 \geq e^{5}$
 $x^{2} > e^{5}-1$
 $|x| > 5e^{5}-1$

$$|x| = \sqrt{-\infty} - \sqrt{-1}$$

$$|x| = \sqrt{-\infty} - \sqrt{-1}$$

$$|x| = \sqrt{-\infty} - \sqrt{-1}$$



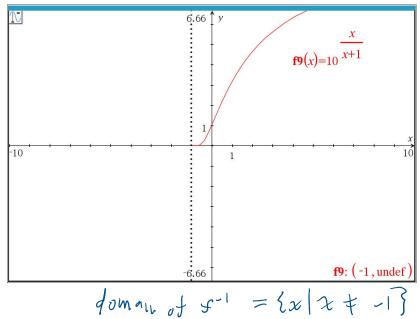
$$(\sqrt{\mathbf{e}^5}-1)$$
 Decimal

6.4: 37

37. In Example 6.4.4 we found the inverse of $f(x) = \frac{\log(x)}{1 - \log(x)}$ to be $f^{-1}(x) = 10^{\frac{x}{x+1}}$.

- (a) Show that $(f^{-1} \circ f)(x) = x$ for all x in the domain of f and that $(f \circ f^{-1})(x) = x$ for all x in the domain of f^{-1} .
- (b) Find the range of f by finding the domain of f^{-1} .
- (c) Let $g(x) = \frac{x}{1-x}$ and $h(x) = \log(x)$. Show that $f = g \circ h$ and $(g \circ h)^{-1} = h^{-1} \circ g^{-1}$. (We know this is true in general by Exercise 31 in Section 5.2, but it's nice to see a specific example of the property.)

(b) ranso of f = domain of f $\mathcal{L}^{-1}(x) = \frac{x}{10^{-2}}$ but desired for x = -1



$$90 \text{ main of } S^{-1} = 1 \times 1 \times 7 = 1$$

0.00

domain of $x^{-1} = \{x \mid x \neq -1\}$

6.5

Supplied

Equation 6.1. Simple Interest The amount of interest I accrued at an annual rate r on an investment P after t years is

$$I = Prt$$

The amount A in the account after t years is given by

$$A = P + I = P + Prt = P(1 + rt)$$

^aCalled the **principal**

Supplied

Equation 6.2. Compounded Interest: If an initial principal P is invested at an annual rate r and the interest is compounded n times per year, the amount A in the account after t years is

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

Supplied

Equation 6.3. Continuously Compounded Interest: If an initial principal P is invested at an annual rate r and the interest is compounded continuously, the amount A in the account after t years is

$$A(t) = Pe^{rt}$$

$$A(0) = Pe^{||F||0||}$$

$$= Pe^{0}$$

$$= |P||X||$$

.. Alt) = A. ert

Supplied

Equation 6.4. Uninhibited Growth: If a population increases according to The Law of Uninhibited Growth, the number of organisms N at time t is given by the formula

$$N(t) = N_0 e^{kt},$$

where $N(0) = N_0$ (read 'N nought') is the initial number of organisms and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = k N(t)

Supplied

Equation 6.5. Radioactive Decay The amount of a radioactive element A at time t is given by the formula

$$A(t) = A_0 e^{kt},$$

where $A(0) = A_0$ is the initial amount of the element and k < 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of A(t) at time t) = k A(t)

Supplied

Equation 6.6. Newton's Law of Cooling (Warming): The temperature T of an object at time t is given by the formula

$$T(t) = T_a + (T_0 - T_a) e^{-kt},$$

where $T(0) = T_0$ is the initial temperature of the object, T_a is the ambient temperature^a and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of T(t) at time t) = k ($T(t) - T_a$)

^aThat is, the temperature of the surroundings

Supplied

Equation 6.7. Logistic Growth: If a population behaves according to the assumptions of logistic growth, the number of organisms N at time t is given by the equation

$$N(t) = \frac{L}{1 + Ce^{-kLt}},$$

where $N(0) = N_0$ is the initial population, L is the limiting population, C is a measure of how much room there is to grow given by

$$C = \frac{L}{N_0} - 1.$$

and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = k N(t) (L - N(t))

^aThat is, as $t \to \infty$, $N(t) \to L$

6.5

In Exercises 14 - 18, we list some radioactive isotopes and their associated half-lives. Assume that each decays according to the formula $A(t) = A_0 e^{kt}$ where A_0 is the initial amount of the material and k is the decay constant. For each isotope:

- Find the decay constant k. Round your answer to four decimal places.
- Find a function which gives the amount of isotope A which remains after time t. (Keep the units of A and t the same as the given data.)
- Determine how long it takes for 90% of the material to decay. Round your answer to two
 decimal places. (HINT: If 90% of the material decays, how much is left?)
- 15. Phosphorus 32, used in agriculture, initial amount 2 milligrams, half-life 14 days.

$$A(t) = A_{0}e^{kt}$$

$$A_{0} = 2$$

$$A(t) = 2e^{kt}$$

$$A(14) = 2e^{14k} = 1$$

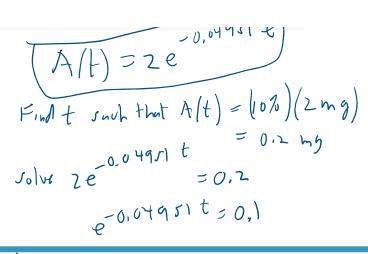
$$e^{14k} = \frac{1}{2}$$

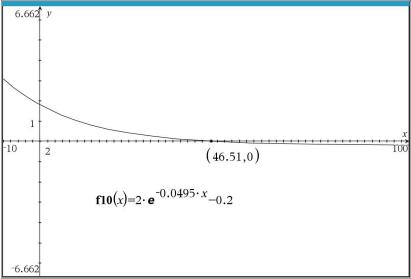
$$l_{n}(e^{14k}) = l_{n}(\frac{1}{2}) = l_{n}(1) - l_{n}(1)$$

$$= 0 - l_{n}(2)$$

$$= -l_{n}(2)$$

$$=$$





90% of the Phosphorus 32 will decay in about 47

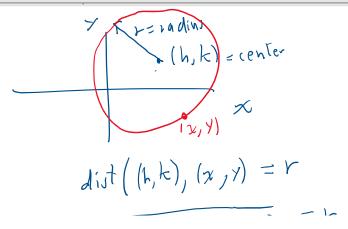
- $k = \frac{\ln(1/2)}{14} \approx -0.0495$ $A(t) = 2e^{-0.0495t}$
- $t = \frac{\ln(0.1)}{-0.0495} \approx 46.52$ days.

7.1 discussed briefly

7.2

memorize

Definition 7.1. A circle with center (h, k) and radius r > 0 is the set of all points (x, y) in the plane whose distance to (h, k) is r.



Memorize

Definition 7.2. The **Unit Circle** is the circle centered at (0,0) with a radius of 1. The standard equation of the Unit Circle is $x^2 + y^2 = 1$.