5.2 Inverse Functions

5.2.1 Exercises

page 391 (403): 1, 5, 11, 17, 23

6 Exponential and Logarithmic Functions

6.1 Introduction to Exponential and Logarithmic Functions

6.1.1 Exercises

page 429 (441): 1, 5, 16, 26, 45, 56, 71, 75

6.2 Properties of Logarithms

6.2.1 Exercises

page 445 (457): 1, 5, 10, 16, 23, 30, 42

Exam 2		stem & leaf		
38.73684	mean			A-0
37	median			B-0
19.83575	st. dev	7	4	C-1
11	min	6	249	D-3
74	max	5	8	F- 15
19	count	4	1569	
		3	567	
		2	58	
		1	12257	

Exam 1		stem & leaf		
51.08333	mean			A-0
55.5	median	8	5	B-1
19.59361	st. dev	7	1246	C-4
17	min	6	000189	D-6
85	max	5	56	F- 13
24	count	4	23349	
		3		
		2	4568	
		1	78	

5.2:5

In Exercises 1 - 20, show that the given function is one-to-one and find its inverse. Check your answers algebraically and graphically. Verify that the range of f is the domain of f^{-1} and vice-versa.

5.
$$f(x) = \sqrt{3x - 1} + 5$$

1-1 Assume $f(c) = f(d)$ show $c = d$

$$3c - 1 + 5 = 3d - 1 + 5$$

$$3c - 1 = 3d - 1$$

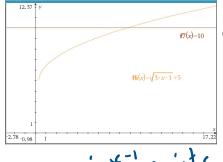
$$3c - 1 = 3d - 1$$

$$3c = 3d$$

$$c = d$$

$$c = d$$

Horizontal line test



Graph passes the horizontal Line test

Replace 5- by with y

$$3y = 1 + (2 - 5)^{2}$$

 $y = (2 - 5)^{2} + 1$ replace y
 $y = (2 - 5)^{2} + 1$ replace y
 $y = (2 - 5)^{2} + 1$ replace y
 $y = (2 - 5)^{2} + 1$ replace y
 $y = (2 - 5)^{2} + 1$ replace y

$$(\cancel{x} \circ \cancel{x}^{-1})(\cancel{x}) = \cancel{x}(\cancel{x}^{-1}(\cancel{x}))$$

$$= \cancel{x}(\cancel{(x-5)^2 + 1})$$

$$= \int \frac{3(k-5)^2+1}{3} -1 +5$$

$$= \int \frac{3(k-5)^2+1}{3} -1 +5$$

$$= \int (2-5)^{2} + 5$$

$$= (2-5) + 5$$

$$= 2$$

$$f(x) = \int_{3x-1}^{3x-1} +5$$

32-130 kavail negative volues under the radical

domain
$$\{x \mid x \ni \frac{1}{3}\}$$

$$= \left(\frac{1}{3}, \infty\right)$$

$$ranse = [5, \infty)$$

$$ranse \left[\frac{1}{3}, \infty\right]$$

$$domain \left[\frac{1}{3}, \infty\right]$$

$$domain \left[\frac{1}{3}, \infty\right]$$

$$domain \left[\frac{1}{3}, \infty\right]$$

$$half of the parabola to make $x = 1 - 1$

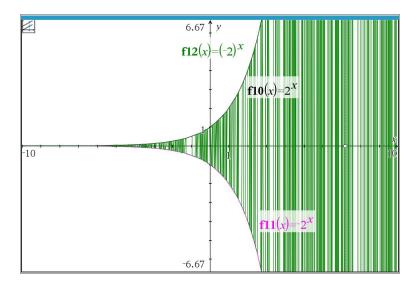
$$\frac{1}{1} = \frac{1}{3} = \frac{1}$$$$

6.1 memorize

Definition 6.1. A function of the form $f(x) = b^x$ where b is a fixed real number, b > 0, $b \ne 1$ is called a **base** b **exponential function**.

Let
$$b=1 \Rightarrow f(x)=|x=|$$
 4| 1

To avoid this mess (see graph), we have b >0.



Memorize

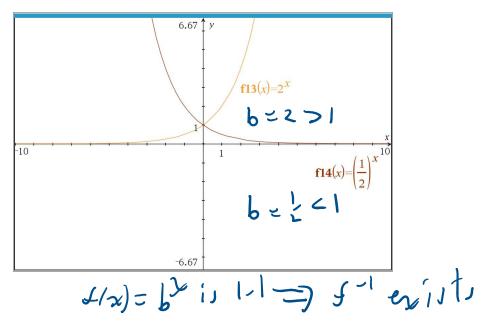
Theorem 6.1. Properties of Exponential Functions: Suppose $f(x) = b^x$.

- The domain of f is $(-\infty, \infty)$ and the range of f is $(0, \infty)$.
- (0,1) is on the graph of f and y=0 is a horizontal asymptote to the graph of f.
- f is one-to-one, continuous and smooth^a
- If b > 1:
 - f is always increasing As $x \to -\infty$, $f(x) \to 0^+$ As $x \to \infty$, $f(x) \to \infty$

• If 0 < b < 1:

- -f is always decreasing
- $\text{ As } x \to -\infty, f(x) \to \infty$
- As $x \to \infty$, $f(x) \to 0^+$
- The graph of f resembles:

 a Recall that this means the graph of f has no sharp turns or corners.



memorize

Definition 6.2. The inverse of the exponential function $f(x) = b^x$ is called the **base b logarithm function**, and is denoted $f^{-1}(x) = \log_b(x)$ We read ' $\log_b(x)$ ' as 'log base b of x.'

Memorize

Definition 6.3. The **common logarithm** of a real number x is $\log_{10}(x)$ and is usually written $\log(x)$. The **natural logarithm** of a real number x is $\log_e(x)$ and is usually written $\ln(x)$.

Memorize

Theorem 6.2. Properties of Logarithmic Functions: Suppose $f(x) = \log_b(x)$.

- The domain of f is $(0, \infty)$ and the range of f is $(-\infty, \infty)$.
- (1,0) is on the graph of f and x=0 is a vertical asymptote of the graph of f.
- \bullet f is one-to-one, continuous and smooth
- $b^a = c$ if and only if $\log_b(c) = a$. That is, $\log_b(c)$ is the exponent you put on b to obtain c.
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0
- If b > 1:
 - f is always increasing
 - As $x \to 0^+$, $f(x) \to -\infty$
 - As $x \to \infty$, $f(x) \to \infty$
 - The graph of f resembles:
- If 0 < b < 1:
 - -f is always decreasing
 - As $x \to 0^+$, $f(x) \to \infty$
 - As $x \to \infty$, $f(x) \to -\infty$
 - The graph of f resembles:

 $y = \log_b(x), \, 0 < b < 1$

+ - 3 n . 1

convert
$$2^3 = 8$$
 to log form
$$10^2 = 100$$

$$109_{10}(100) = 2$$

$$105_{10}(1,000,000) = 6$$

$$count the Rein$$

log(100) = ln 100 = 4.6052

Scientific Notebook inteprets log as natural log

$$\log_{10}(100) = 2$$

TI-nspire interprets log as common log

I typed log (100) and my input was converted to base 10

$$\log_{10}(100)$$

6.2

memorize

Theorem 6.3. (Inverse Properties of Exponential and Logarithmic Functions) Let $b > 0, b \neq 1$.

- $b^a = c$ if and only if $\log_b(c) = a$
- $\log_b(b^x) = x$ for all x and $b^{\log_b(x)} = x$ for all x > 0

Memorize

Theorem 6.4. (One-to-one Properties of Exponential and Logarithmic Functions) Let $f(x) = b^x$ and $g(x) = \log_b(x)$ where b > 0, $b \ne 1$. Then f and g are one-to-one and

- $b^u = b^w$ if and only if u = w for all real numbers u and w.
- $\log_b(u) = \log_b(w)$ if and only if u = w for all real numbers u > 0, w > 0.

Memorize

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let $f(x) = b^x$ be an exponential function $(b > 0, b \neq 1)$ and let u and w be real numbers.

- **Product Rule:** f(u+w) = f(u)f(w). In other words, $b^{u+w} = b^u b^w$
- Quotient Rule: $f(u-w) = \frac{f(u)}{f(w)}$. In other words, $b^{u-w} = \frac{b^u}{b^w}$
- Power Rule: $(f(u))^w = f(uw)$. In other words, $(b^u)^w = b^{uw}$

$$2^{3+2} = 2^{5} = (2)(2)(2)(2)(2) = 32$$

$$= (2^{3})(2^{2})$$

$$= (2^{3})(2^{2})$$

$$= (2^{3})(2^{2})(2)(2)(2)(2)$$

$$= 2^{6}$$

Memorize

Theorem 6.6. (Algebraic Properties of Logarithmic Functions) Let $g(x) = \log_b(x)$ be a logarithmic function $(b > 0, b \neq 1)$ and let u > 0 and w > 0 be real numbers.

- Product Rule: g(uw) = g(u) + g(w). In other words, $\log_b(uw) = \log_b(u) + \log_b(w)$
- Quotient Rule: $g\left(\frac{u}{w}\right) = g(u) g(w)$. In other words, $\log_b\left(\frac{u}{w}\right) = \log_b(u) \log_b(w)$
- • Power Rule: $g\left(u^{w}\right)=wg(u).$ In other words, $\log_{b}\left(u^{w}\right)=w\log_{b}(u)$

Prove the product rule

Prove
$$|o_{b}(u w) = |o_{b}(u) + |o_{b}(w)|$$

Let $A = |o_{b}(u)|$, let $B = |o_{b}(w)|$
 $|b^{A} = u|$, $|b^{A} = w|$
 $|o_{b}(u w) = |o_{b}(b^{A} + b^{B})|$
 $= |o_{b}(b^{A} + b^{B}) = |A + B|$
 $|o_{b}(u)| + |o_{b}(w)| = |A + B|$

Theorem 6.7. (Change of Base Formulas) Let $a, b > 0, a, b \neq 1$.

- $a^x = b^{x \log_b(a)}$ for all real numbers x.
- $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ for all real numbers x > 0.

convert
$$\log_2 x$$
 to $\ln x$

$$y = x$$

Let
$$|y=109_2|^{\frac{1}{2}}$$
 $|y=2|$
 $|y$