5.2 Inverse Functions

5.2.1 Exercises

page 391 (403): 1, 5, 11, 17, 23

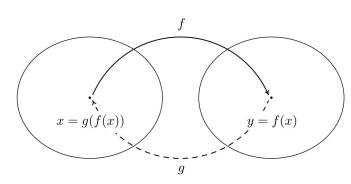
6 Exponential and Logarithmic Functions

6.1 Introduction to Exponential and Logarithmic Functions

6.1.1 Exercises

page 429 (441): 1, 5, 16, 26, 45, 56, 71, 75

Took exam 2


5.1

Memorize

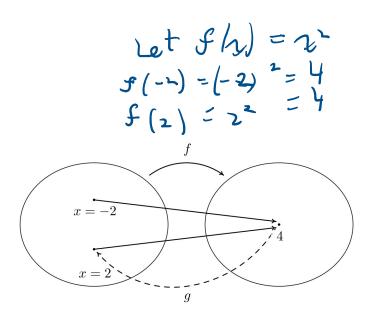
Definition 5.2. Suppose f and g are two functions such that

- 1. $(g \circ f)(x) = x$ for all x in the domain of f and
- 2. $(f \circ g)(x) = x$ for all x in the domain of g

then f and g are inverses of each other and the functions f and g are said to be invertible.

memorize

Theorem 5.2. Properties of Inverse Functions: Suppose f and g are inverse functions.


- The range of f is the domain of g and the domain of f is the range of g
- f(a) = b if and only if g(b) = a
- (a,b) is on the graph of f if and only if (b,a) is on the graph of g

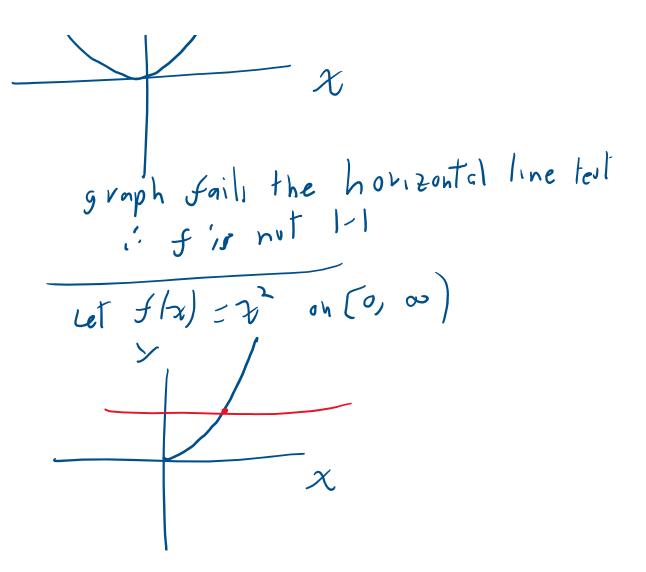
Memorize

^aRecall this is the set of all outputs of a function.

Theorem 5.3. Uniqueness of Inverse Functions and Their Graphs: Suppose f is an invertible function.

- There is exactly one inverse function for f, denoted f^{-1} (read f-inverse)
- The graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) across the line y = x.

If two inputs of f(x) have the same output, f(x) does not have an inverse.


Definition 5.3. A function f is said to be **one-to-one** if f matches different inputs to different outputs. Equivalently, f is one-to-one if and only if whenever f(c) = f(d), then c = d.

Memorize

Theorem 5.4. The Horizontal Line Test: A function f is one-to-one if and only if no horizontal line intersects the graph of f more than once.

Let f(x) = 2x - 4is f(x) = 1 - 1? Assume f(c) = f(d) f(c) = f(d) f(c) = 2d - 4f(c) = 2d - 4

26 = 201 c=d graph passes
rme horizontal line test (4-,67 : 5 11 1-1 Let f(a) = 22? Assum f(c) = f(d) c2 = d2 $c = \pm d$ Since it is not necessary that c=d 5 11 nut 1-1

Memorize

Theorem 5.5. Equivalent Conditions for Invertibility: Suppose f is a function. The following statements are equivalent.

- \bullet f is invertible
- \bullet f is one-to-one
- \bullet The graph of f passes the Horizontal Line Test

Memorize

Steps for finding the Inverse of a One-to-one Function

- 1. Write y = f(x)
- 2. Interchange x and y
- 3. Solve x = f(y) for y to obtain $y = f^{-1}(x)$

5/20 = 25 - 4

we know that f is 1-1

if -1/2) exists

$$y = 2x - 4 \quad \text{switch } x_{j}y$$

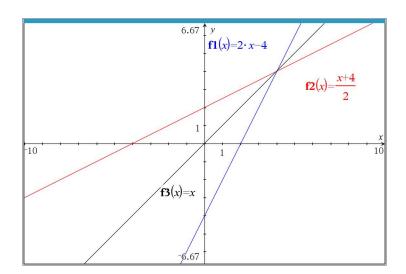
$$x = 2y - 4 \quad \text{Jolve for } y$$

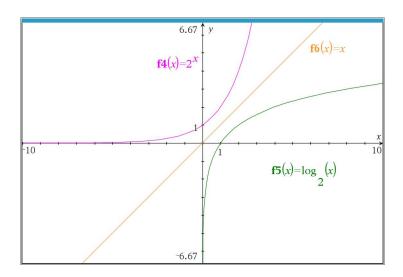
$$2y = x_{j} + 4$$

$$y = \frac{x_{j} + 4}{2}$$

$$(f \circ f^{-1})(x)$$

$$= f(f^{-1}(x))$$


$$= f(\frac{x_{j} + 4}{2})$$


$$= 2(\frac{x_{j} + 4}{2}) - 4$$

$$= x_{j} + 4 - 4$$

$$= x_{j}$$

The graph of f(x) and $f^{-1}(x)$ are mirror images or reflections across the line y = x.

