10-02-25 MTH 167-002N
3.2 The Factor Theorem and the Remainder Theorem

3.2.1 Exercises
page 265 (277): 1, 3,9, 21, 35, 42

3.3 Real Zeros of Polynomials
3.3.3: Exercises
page 280 (392): 1, 31, 37,48
3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4.1 Exercises
page 295 (307): 1, 11, 13, 23, 27, 50

3.2:35
In Exercises 31 - 40, you are given a polynomial and one of its zeros. Use the techniques in this

section to find the rest of the real zeros and factor the polynomial.

35. 23 +222 - 32 —6, c=—2
Although there is a formula for solving cubic polynomial equations, we will not use it in this class.
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fl(x)=x3+2-x —3-x—6

7.4

3.2:42

In Exercises 41 - 45, create a polynomial p which has the desired characteristics. You may leave
the polynomial in factored form.

42. e The zeros of p are c=1 and ¢ =3
e ¢ =3 is a zero of multiplicity 2.

o The leading term of p(x) is —523
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f2(x)=—5- (x—l)- (x—3)2

11 |(1,0) (3,0)

3.3
supplied
Theorem 3.8. Cauchy’s Bound: Suppose f(z) = an2" + ap—2" ' 4+ ... + @,z + a, is a
polynomial of degree n with n > 1. Let M be the largest of the numbers: %, %, ey ‘alg;lll
Then all the real zeros of f lie in in the interval [—(M + 1), M + 1].
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f3(x =4-x5+6-x4—2~x2+1
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solve(4- X246 x3-2. x2+1=0,x) x="1.28977

chve@-x5+6-x4—2-x2+1:OJ)

$125-0.314082- i or x=-0.598239+0.457353- i or x=-0.598239-0.457353- i or x="1.28977

a + by n- b,
| | | )

:Solve(4-x5+6-x4—2-x2+l:0,x)

x=0.493125+0.314082- i or x=0.493125—-0.314082- i or x=-0.598239+0.457353 i or x="C
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Theorem 3.9. Rational Zeros Theorem: Suppose f(z) = a,2™ + ap—z" ' + ...+ ¢,z + a,
is a polynomial of degree n with n > 1, and ay, a4, ...a, are integers. If r is a rational zero of
f, then r is of the form :l:%, where p is a factor of the constant term a,, and ¢ is a factor of the
leading coefficient a,,.
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Theorem 3.10. Descartes’ Rule of Signs: Suppose f(z) is the formula for a polynomial
function written with descending powers of .

e If P denotes the number of variations of sign in the formula for f(z), then the number of
positive real zeros (counting multiplicity) is one of the numbers {P, P —2, P —4, ...}.

e If N denotes the number of variations of sign in the formula for f(—x), then the number

of negative real zeros (counting multiplicity) is one of the numbers {N, N -2, N —4, ... }.
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Theorem 3.11. Upper and Lower Bounds: Suppose f is a polynomial of degree n > 1.

e If ¢ > 0 1is synthetically divided into f and all of the numbers in the final line of the division
tableau have the same signs, then c is an upper bound for the real zeros of f. That is,
there are no real zeros greater than c.

e If ¢ < 0 is synthetically divided into f and the numbers in the final line of the division
tableau alternate signs, then c is a lower bound for the real zeros of f. That is, there are
no real zeros less than c.

NOTE: If the number 0 occurs in the final line of the division tableau in either of the
above cases, it can be treated as (+) or (—) as needed.
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Memorize

Definition 3.4. The imaginary unit ¢ satisfies the two following properties

1Li2=-1 ’:?A’/CF\

2. If ¢ is a real number with ¢ > 0 then \/—c = i/c
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Memorize

numbers and ¢ is the imaginary unit.

Definition 3.5. A complex number is a number of the form a + bi, where a and b are rea
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Supplied or I will ask you to prove
Theorem 3.12. Properties of the Complex Conjugate: Let z and w be complex numbers.
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e 2 is a real number if and only if Z = z.
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Theorem 3.13. The Fundamental Theorem of Algebra: Suppose f is a polynomial func-
tion with complex number coefficients of degree n > 1, then f has at least one complex zero.

Supplied

Theorem 3.14. Complex Factorization Theorem: Suppose f is a polynomial function with
complex number coefficients. If the degree of f is n and n > 1, then f has exactly n complex

zeros, counting multiplicity. If z,, 25, ..., 2, are the distinct zeros of f, with multiplicities m,,
M, ..., My, respectively, then f(z) =a(z —2,)™ (x — 2,)" -+ (x — 2,)"*.
Memorize

Theorem 3.15. Conjugate Pairs Theorem: If f is a polynomial function with real number
coefficients and z is a zero of f, then so is Z.
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Theorem 3.16. Real Factorization Theorem: Suppose f is a polynomial function with real
number coefficients. Then f(z) can be factored into a product of linear factors corresponding to
the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f.
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