2.3 Quadratic Functions

2.3.1 Exercises

page 200 (212): 1, 4, 11, 21, 26

2.4 Inequalities with Absolute Value and Quadratic Functions

2.4.1 Exercises

page 220 (232): 1, 8, 17, 34, 36

3 Polynomial Functions

3.1 Graphs of Polynomials

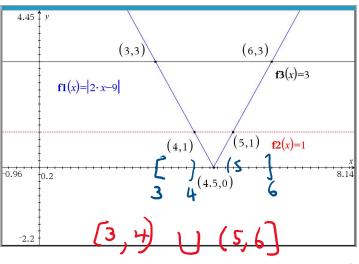
3.1.1 Exercises

page 246 (258): 3, 7, 13, 21, 27

2.4:8

In Exercises 1 - 32, solve the inequality. Write your answer using interval notation.

8.
$$1 < |2x - 9| < 3$$



 $TJ 3 \in Solution Set?$ |?|213-9|?3 |?|6-9|?3 |?|-3|?3 |2|-3|?3 |2|50|ntion Set?

, . JE JUINL, M JUI

Do the same for the upper bound.

Quadratic inequalities

$$f(x) = (x - 4)(x + 5)$$

$$= x^{2} + 5x - 4x - 20$$

$$= x^{2} + 2 - 20$$

$$= x^{2} + 2 - 20$$

$$f(x) = (x - 4)(x + 5)$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

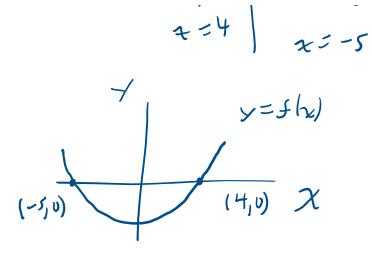
$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f(x) = (x - 4)(x + 5) = 0$$

$$f$$



$$(-\infty, -5) \cup (4, \infty)$$

 $J(x) = (\chi - 4) |\chi + 5|$ (algobraic method) solve f(x) > 0

(x-470) and x+570) or (x-420) and x+5<0)(x>4) and x>-5) or (x=4) and x<-5)

-s 4

204

John set = (-00, -5) U (4,00)

numeric test value method $f(x) = (x - 4)(x + 5) = x^{2} + x - 20$

3.1 Memorize

Definition 3.1. A **polynomial function** is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are real numbers and $n \geq 1$ is a natural number. The domain of a polynomial function is $(-\infty, \infty)$.

Memorize

Definition 3.2. Suppose f is a polynomial function.

- Given $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ with $a_n \neq 0$, we say
 - The natural number n is called the **degree** of the polynomial f.
 - The term $a_n x^n$ is called the **leading term** of the polynomial f.
 - The real number a_n is called the **leading coefficient** of the polynomial f.
 - The real number a_0 is called the **constant term** of the polynomial f.
- If $f(x) = a_0$, and $a_0 \neq 0$, we say f has degree 0.
- If f(x) = 0, we say f has no degree.

^aSome authors say f(x) = 0 has degree $-\infty$ for reasons not even we will go into.

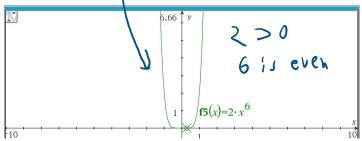
Memorize

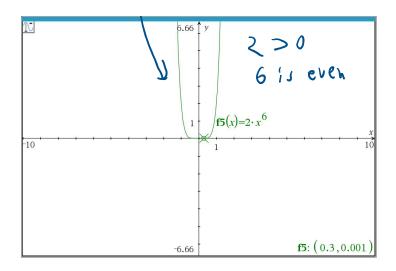
End Behavior of functions $f(x) = ax^n$, n even.

Suppose $f(x) = ax^n$ where $a \neq 0$ is a real number and n is an even natural number. The end behavior of the graph of y = f(x) matches one of the following:

- for a > 0, as $x \to -\infty$, $f(x) \to \infty$ and as $x \to \infty$, $f(x) \to \infty$
- for a < 0, as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to \infty$, $f(x) \to -\infty$

Graphically:





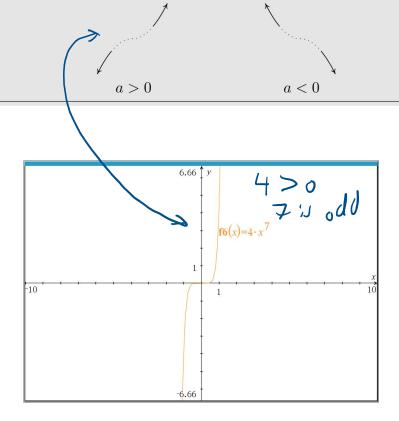
Memorize

End Behavior of functions $f(x) = ax^n$, n odd.

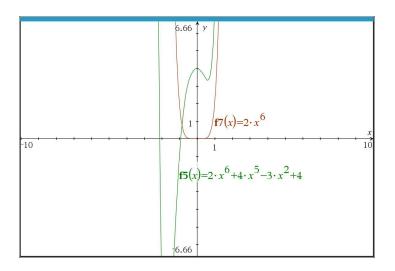
Suppose $f(x) = ax^n$ where $a \neq 0$ is a real number and $n \geq 3$ is an odd natural number. The end behavior of the graph of y = f(x) matches one of the following:

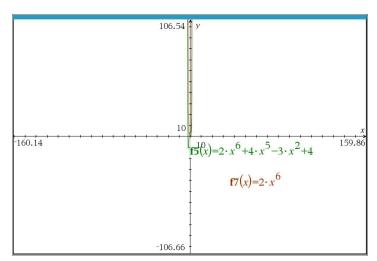
- for a > 0, as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to \infty$, $f(x) \to \infty$
- for a < 0, as $x \to -\infty$, $f(x) \to \infty$ and as $x \to \infty$, $f(x) \to -\infty$

Graphically:



Theorem 3.2. End Behavior for Polynomial Functions: The end behavior of a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ with $a_n \neq 0$ matches the end behavior of $y = a_n x^n$.





Memorize the procedure

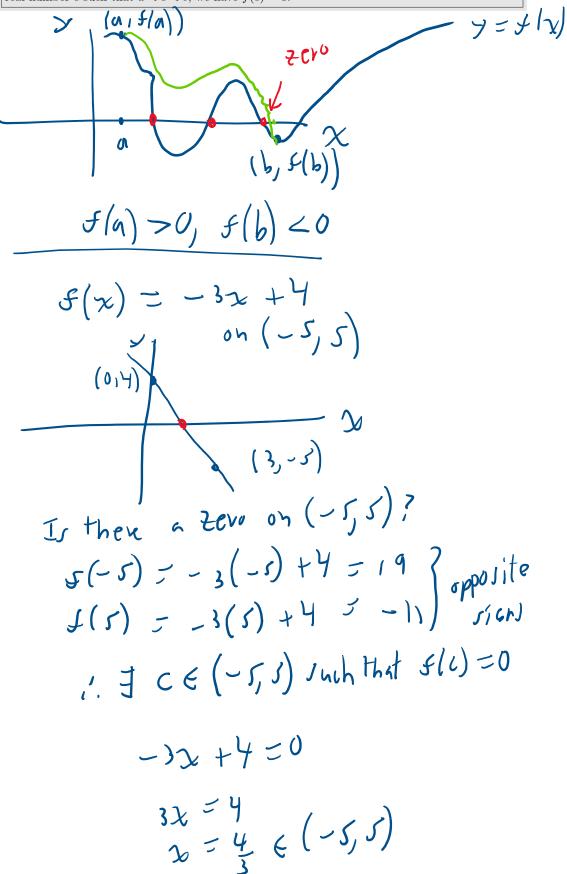
Steps for Constructing a Sign Diagram for a Polynomial Function Suppose f is a polynomial function.

- 1. Find the zeros of f and place them on the number line with the number 0 above them.
- 2. Choose a real number, called a **test value**, in each of the intervals determined in step 1.
- 3. Determine the sign of f(x) for each test value in step 2, and write that sign above the corresponding interval.

Supplied

Theorem 3.1. The Intermediate Value Theorem (Zero Version): Suppose f is a continuous function on an interval containing x = a and x = b with a < b. If f(a) and f(b) have different signs, then f has at least one zero between x = a and x = b; that is, for at least one real number c such that a < c < b, we have f(c) = 0.

tinuous function on an interval containing x = a and x = b with a < b. If f(a) and f(b) have different signs, then f has at least one zero between x = a and x = b; that is, for at least one real number c such that a < c < b, we have f(c) = 0.



Definition 3.3. Suppose f is a polynomial function and m is a natural number. If $(x-c)^m$ is a factor of f(x) but $(x-c)^{m+1}$ is not, then we say x=c is a zero of **multiplicity** m.

$$\frac{\operatorname{rof} f(x) \operatorname{but} (x-c)^{m+1} \operatorname{is not, then we say} x = c \operatorname{is a zer}}{\mathcal{L}(x)^{2} \left(x-2\right)^{3} \left(x-4\right)^{5}}$$

$$\frac{\operatorname{zero} \operatorname{mhlt, plint}}{x=2}$$

$$x=4$$

$$5$$

Memorize

Theorem 3.3. The Role of Multiplicity: Suppose f is a polynomial function and x = c is a zero of multiplicity m.

- If m is even, the graph of y = f(x) touches and rebounds from the x-axis at (c, 0).
- If m is odd, the graph of y = f(x) crosses through the x-axis at (c, 0).

