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1.5 Function Arithmetic
1.5.1 Exercises
page 84 (96): 1, 11, 17, 21, 23, 25, 46, 57

5*1.6=8 sections by today to be on track

1.6 Graphs of Functions
1.6.2 Exercises
page 107 (119):1, 7,9, 14, 21, 24,32, 75
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In Exercises 46 - 50, C'(z) denotes the cost to produce = items and p(x) denotes the price-demand
function in the given economic scenario. In each Exercise, do the following:

¢ Find and interpret C'(0). ¢ Find and interpret C(10).
e Find and interpret p(5) ¢ Find and simplify R(x).
e Find and simplify P(z). e Solve P(z) = 0 and interpret.

46. The cost, in dollars, to produce x “I'd rather be a Sasquatch” T-Shirts is C(x) = 2x + 26,
x > 0 and the price-demand function, in dollars per shirt, is p(z) = 30 — 22, 0 < x < 15.
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Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

e The price-demand function p(z) calculates the price per item.

¢ The revenue function R(z) calculates the total money collected by selling z items at a
price p(z), R(x) = zp(x).

e The cost function C(z) calculates the cost to produce z items. The value C(0) is called
the fixed cost or start-up cost.

e The average cost function C(z) = C(m

Here, we necessarily assume x > 0.

calculates the cost per item when making x items.

e The profit function P(z) calculates the money earned after costs are paid when x items
are produced and sold, P(z) = (R — C)(z) = R(z) — C(z).
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The average cost for producing 10 T-shirts is $4.60
o(S) = 30-2(5) =30 -0 22

If 5 T-shirts are produced, the price per T-shirt is $20.
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If 1 or 13 T-shirts are produced, then the profit is
zero. That is, we break even.

1.5

In Exercises 21 - 45, find and simplify the difference quotient for the given function.
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1.6
Memorize

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(z). That is, the
point (z,y) is on the graph of f if and only if y = f(z).
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Memorize

words, x is a zero of f if and only if (z,0) is an a-intercept of the graph of y = f(z).

Definition 1.9. The zeros of a function f are the solutions to the equation f(z) = 0. In other
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Memorize

Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

eVen
e about the y-axis if and only if f(—x) = f(x) for all z in the domain of f.

e about the origin if and only if f(—z) = —f() for all z in the domain of f.

odd

We know that the sine function is odd, so the graph
is misleading because -0.868 is not equal to -0.867.
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Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

e increasing on [ if and only if f(a) < f(b) for all real numbers a, b in I with a < b.

e decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.

e constant on ! if and only if f(a) = f(b) for all real numbers a, b in I.

Memorize
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Definition 1.11. Suppose f is a function with f(a) = b.

e We say f has a local maximum at the point (a,b) if and only if there is an open interval
I containing a for which f(a) > f(x) for all z in I. The value f(a) = b is called ‘a local
maximum value of f’ in this case.

e We say f has a local minimum at the point (a,b) if and only if there is an open interval
I containing a for which f(a) < f(z) for all z in I. The value f(a) = b is called ‘a local
minimum value of f’ in this case.

e The value b is called the maximum of f if b > f(z) for all x in the domain of f.

e The value b is called the minimum of f if b < f(z) for all z in the domain of f.
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Informal definition: a local max is the top of a small hill, h’“)(

a local min is the bottom of a valley.
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Example 1.6.6. Find the points on the graph of y = (z — 3)? which are closest to the origin.
Round your answers to two decimal places.

Solution. Suppose a point (z,y) is on the graph of y = (x — 3)2. Its distance to the origin (0,0)
is given by

d = /(x—0)2+ (y—0)2
- PP
= \/:c2 + [(x —3)2)? Since y = (z — 3)?

= yfe?4 (2—3)*
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Quiz 2 Your Name MTH 167-002N calculator OK

1. Find and simplify the difference quotient for f(x) = x? — 1.
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2. Find the domain of L& for f(x) =x and g(x) = /x.

g(x)
Show reasoning and calculations.
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