09-09-25 MTH 167-002N

1.5 Function Arithmetic

1.5.1 Exercises

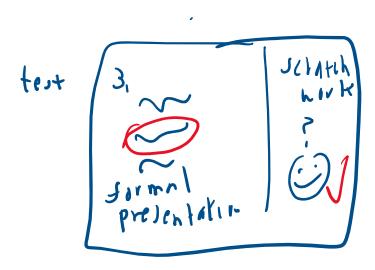
page 84 (96): 1, 11, 17, 21, 23, 25, 46, 57

5*1.6=8 sections by today to be on track

1.6 Graphs of Functions

1.6.2 Exercises

page 107 (119): 1, 7, 9, 14, 21, 24, 32, 75



1.5:46

In Exercises 46 - 50, C(x) denotes the cost to produce x items and p(x) denotes the price-demand function in the given economic scenario. In each Exercise, do the following:

• Find and interpret C(0).

• Find and interpret $\overline{C}(10)$.

• Find and interpret p(5)

• Find and simplify R(x).

• Find and simplify P(x).

- Solve P(x) = 0 and interpret.
- 46. The cost, in dollars, to produce x "I'd rather be a Sasquatch" T-Shirts is C(x) = 2x + 26, $x \ge 0$ and the price-demand function, in dollars per shirt, is p(x) = 30 2x, $0 \le x \le 15$.

$$C(0) = 2/0) + 26 = 26$$

\$26 is the start-up cost

Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

- The price-demand function p(x) calculates the price per item.
- The revenue function R(x) calculates the total money collected by selling x items at a price p(x), R(x) = x p(x).
- The cost function C(x) calculates the cost to produce x items. The value C(0) is called the fixed cost or start-up cost.
- The average cost function $\overline{C}(x) = \frac{C(x)}{x}$ calculates the cost per item when making x items. Here, we necessarily assume x > 0.
- The profit function P(x) calculates the money earned after costs are paid when x items are produced and sold, P(x) = (R C)(x) = R(x) C(x).

$$Z(10) = \frac{2(10) + 26}{10} = \frac{20 + 26}{10} = \frac{46}{10}$$

$$\overline{Z(10)} = \frac{46}{10}$$

The average cost for producing 10 T-shirts is \$4.60

$$p(5) = 30 - 2(5) = 30 - 10 = 20$$

If 5 T-shirts are produced, the price per T-shirt is \$20.

$$R(x) = x p(x) = x(30-2x) = 30x-2x^{2}$$

$$P(x) = R(x) - ((x))$$

$$= 30 x - 2x^{2} - (2x + 16)$$

$$= 30 x - 2x^{2} - 2x - 26$$

$$P(x) = -2x^{2} + 28x - 26$$

$$Solve P(x) = 0 \text{ and interpret.}$$

$$-2x^{2} + 28x - 26 = 0$$

$$-\frac{2x^{2}}{1} + \frac{28x}{1} - \frac{26}{1} = \frac{0}{1}$$

$$-\frac{22^{2}}{-1} + \frac{282}{-1} - \frac{26}{-1} = \frac{0}{-2}$$

$$2^{2} - 142 + 13 = 0$$

$$(2 - 1)(2 - 13) = 0$$

$$2^{2} = 1, 13$$

If 1 or 13 T-shirts are produced, then the profit is zero. That is, we break even.

1.5

In Exercises 21 - 45, find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the given function.

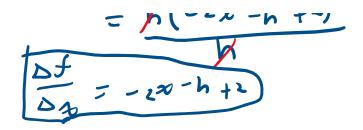
$$\frac{\Delta f}{D x} = \frac{f(x+h) - f(x)}{h}$$

$$= \frac{\left(-(x+h)^{2} + 2(x+h) - 1\right) - \left(-\frac{1}{2} + 2x - 1\right)}{h}$$

$$= -\left(x^{2} + 2x + h + h^{2}\right) + 2x + 2h - 1 + 4^{2} - 2x + 1$$

$$= -x^{4} - 2x + h - h^{2} + 2h$$

$$= h \left(-2x - h + 2\right)$$



1.6 Memorize

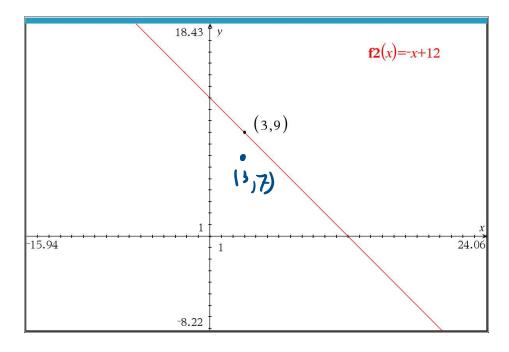
The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the point (x, y) is on the graph of f if and only if y = f(x).

Is the point
$$(3,7)$$
 on the graph
$$y = -2 + 12$$

$$7 \stackrel{?}{=} -3 + 12$$

$$7 \stackrel{?}{=} 9$$



Memorize

Definition 1.9. The **zeros** of a function f are the solutions to the equation f(x) = 0. In other words, x is a zero of f if and only if (x,0) is an x-intercept of the graph of y = f(x).

Memorize

Testing the Graph of a Function for Symmetry

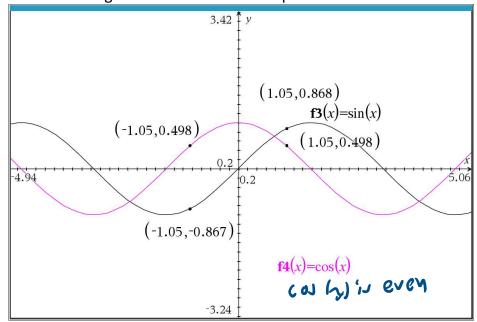
The graph of a function f is symmetric

even

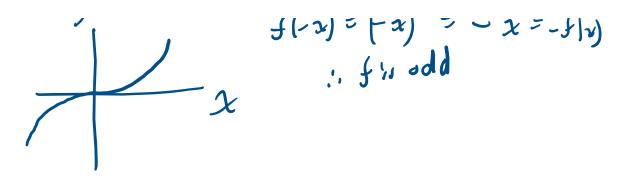
- about the y-axis if and only if f(-x) = f(x) for all x in the domain of f.
- about the origin if and only if $f(-x) = -\underline{f}(x)$ for all x in the domain of f.

odd

We know that the sine function is odd, so the graph is misleading because -0.868 is not equal to -0.867.



 $f(x) = x^{2} \text{ is } f \text{ even at odd}$ $f(-x) = (-x)^{2} = x^{2} = f(x)$ $f(x) = x^{2} = f(x)$ $f(x) = x^{2}$ $f(x) = x^{2}$



Memorize

Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

- increasing on I if and only if f(a) < f(b) for all real numbers a, b in I with a < b.
- decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.
- constant on I if and only if f(a) = f(b) for all real numbers a, b in I.

Memorize

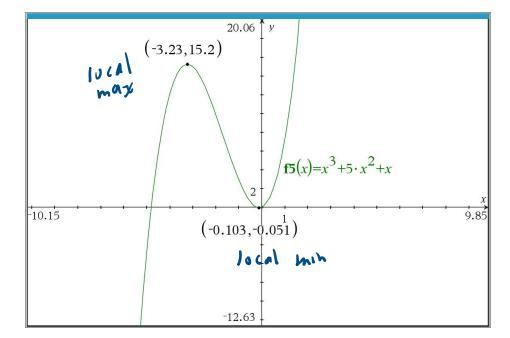
Definition 1.11. Suppose f is a function with f(a) = b.

relative

- We say f has a **local maximum** at the point (a, b) if and only if there is an open interval I containing a for which $f(a) \ge f(x)$ for all x in I. The value f(a) = b is called 'a local maximum value of f' in this case.
- We say f has a **local minimum** at the point (a, b) if and only if there is an open interval I containing a for which $f(a) \leq f(x)$ for all x in I. The value f(a) = b is called 'a local minimum value of f' in this case.
- The value b is called the **maximum** of f if $b \ge f(x)$ for all x in the domain of f.
- The value b is called the **minimum** of f if $b \le f(x)$ for all x in the domain of f.

ap in lake

CALL



Example 1.6.6. Find the points on the graph of $y = (x - 3)^2$ which are closest to the origin. Round your answers to two decimal places.

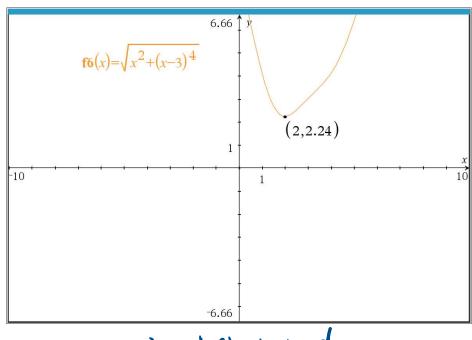
Solution. Suppose a point (x, y) is on the graph of $y = (x - 3)^2$. Its distance to the origin (0, 0) is given by

$$d = \sqrt{(x-0)^2 + (y-0)^2}$$

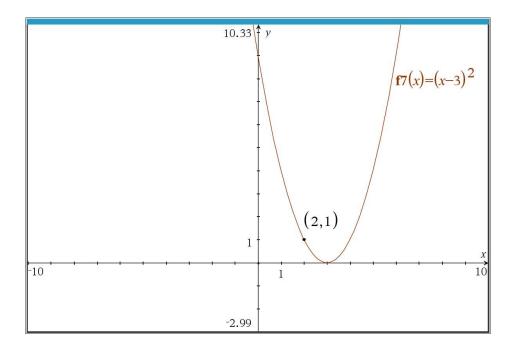
$$= \sqrt{x^2 + y^2}$$

$$= \sqrt{x^2 + [(x-3)^2]^2} \quad \text{Since } y = (x-3)^2$$

$$= \sqrt{x^2 + (x-3)^4}$$



but t=2 on original graph $\Rightarrow y=(2-3)^2=(-1)^2=1$ $\therefore (2,1); the desired point$



Quiz 2 Your Name MTH 167-002N calculator OK

1. Find and simplify the difference quotient for $f(x) = x^2 - 1$.

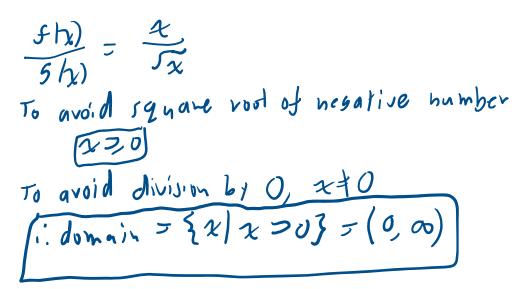
$$\frac{\Delta f}{\Delta x} = \frac{f(x+h)^2 - f(y)}{h} = \frac{(x+h)^2 - 1}{h} - \frac{(x^2 - 1)^2}{h}$$

$$= \frac{\chi^2 + 2\chi h + h^2 - 1 - \chi^2}{h} = \frac{\chi^2 + 2\chi h + h^2}{h} = \frac{\chi^2 + 2\chi h + h^2}{h}$$

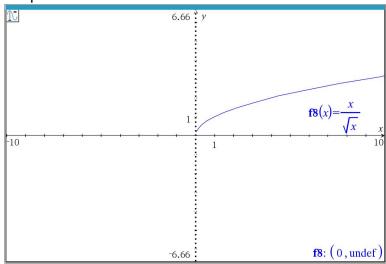
$$= \frac{\chi^2 + 2\chi h + h^2 - 1 - \chi^2}{h}$$

$$= \frac{\chi^2 + 2\chi h + h^2}{h} = \frac{\chi^2 + 2\chi h + h^2}{h}$$

2. Find the domain of $\frac{f(x)}{g(x)}$ for f(x) = x and $g(x) = \sqrt{x}$. Show reasoning and calculations.



Graphical check



Note: if $x \neq 0$, $\frac{x}{\sqrt{x}} = 5x$ This simplified finition had $dbmain [0, \infty)$ $= \{x \mid 2, 3, 0\}$