09-04-24 MTH 167-002N

1.3 Introduction to Functions

1.3.1 Exercises

page 43 (55): 1, 2, 6, 14, 16, 39, 46

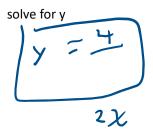
1.4 Function Notation

1.4.2 Exercises

page 63 (75): 1, 4, 15, 19, 31, 35, 37, 39, 67

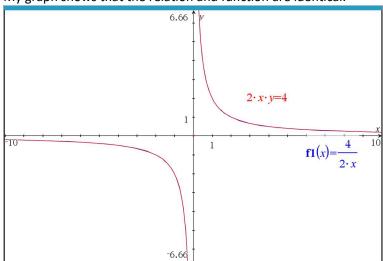
1.5 Function Arithmetic

1.5.1 Exercises


page 84 (96): 1, 11, 17, 21,23,25, 46, 57

1.3:46

In Exercises 33 - 47, determine whether or not the equation represents y as a function of x.


46. 2xy = 4

For each x not equal to 0, there is exactly one corresponding y-value, so y is a function of x,

Note domain at function = 3x | 2 +03

My graph shows that the relation and function are identical.

In Exercises 11 - 18, use the given function f to find and simplify the following:

• f(3)

• f(-1)

• $f\left(\frac{3}{2}\right)$

• f(4x)

• 4f(x)

• f(-x)

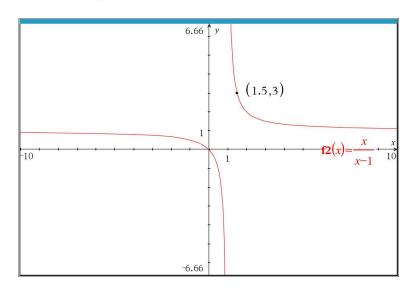
• f(x-4)

• f(x) - 4

• $f(x^2)$

$$15. \ f(x) = \frac{x}{x-1}$$

$$f\left(\frac{3}{L}\right) = \frac{3}{2}$$


$$\frac{3}{2}$$

$$\frac{3}{3}$$

$$-1\left(\frac{2}{2}\right)$$

$$= \left(\frac{3}{4}\right)\left(\frac{2}{1}\right)$$

$$=\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)$$

1.5 Memorize

Function Arithmetic

Suppose f and g are functions and x is in both the domain of f and the domain of g.

Function Arithmetic

Suppose f and g are functions and x is in both the domain of f and the domain of g.

• The sum of f and g, denoted f + g, is the function defined by the formula

$$(f+g)(x) = f(x) + g(x)$$

• The **difference** of f and g, denoted f - g, is the function defined by the formula

$$(f-g)(x) = f(x) - g(x)$$

• The **product** of f and g, denoted fg, is the function defined by the formula

$$(fg)(x) = f(x)g(x)$$

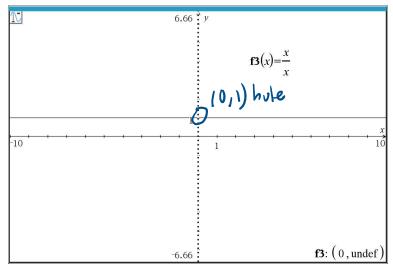
• The **quotient** of f and g, denoted $\frac{f}{g}$, is the function defined by the formula

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)},$$

provided $g(x) \neq 0$.

 a Thus x is an element of the intersection of the two domains.

Let
$$h = f+g$$
 det


 $h(x) = (f+g)(x) = f(x) + g(x)$

Let $f(x) = 3x$
 $g(x) = 5$
 $\Rightarrow (f+g)(x) = f(x) + g(x) = 3x + 5$

Implies

 $f(x) = x$
 $f(x)$

domain where
$$f(x) = \{x \mid x \neq 0\}$$

 $f(x) = \{x \mid x \neq 0\}$
 $f(x) = \{x \mid x \neq 0\}$

Memorize

Definition 1.8. Given a function f, the difference quotient of f is the expression

$$\frac{f(x+h)-f(x)}{h}$$
 \uparrow \flat

$$(x+h)-x = x+h-x$$

$$= x-x+h$$

$$= (0)+h$$

$$= h$$

$$\Rightarrow x$$

$$\Rightarrow x = x+h-x$$

$$\Rightarrow x = x+h$$

- 2 notient

Supplied

Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

- The price-demand function p(x) calculates the price per item.
- The revenue function R(x) calculates the total money collected by selling x items at a price p(x), R(x) = x p(x).
- The cost function C(x) calculates the cost to produce x items. The value C(0) is called the fixed cost or start-up cost.
- The average cost function $\overline{C}(x) = \frac{C(x)}{x}$ calculates the cost per item when making x items. Here, we necessarily assume x > 0.
- The profit function P(x) calculates the money earned after costs are paid when x items are produced and sold, P(x) = (R C)(x) = R(x) C(x).

1.5

In Exercises 51 - 62, let f be the function defined by

$$f = \{(-3,4), (-2,2), (-1,0), (0,1), (1,3), (2,4), (3,-1)\}$$

and let g be the function defined

$$g = \{(-3, -2), (-2, 0), (-1, -4), (0, 0), (1, -3), (2, 1), (3, 2)\}$$

. Compute the indicated value if it exists.

$$(f+g)(5) = f(s) + g(s)$$

$$= not defined \quad s \notin domain of f$$

$$o \circ g$$

$$f(f+g)(-2) = f(-2) + g(-2) = 2 + 0 = 2$$

$$def$$

$$the gnaphity "f plus g" of -2$$

$$Let f(x) = 5x + 3 \quad f(in put) = f(in put) + 3$$

$$Find and simplify the difference quotient$$

$$\Delta f = \frac{f(x+h) - f(x)}{h}, h \neq 0$$

$$= \frac{\left[5(x+h)+3\right] - \left[5x+3\right]}{h}$$

$$= \frac{5x}{h} + 5h + 3 - 5x - 3$$

$$= \frac{5h}{h}$$

$$= \frac$$

$$=\frac{k(2x+h)}{h}$$

$$\Rightarrow \frac{4}{4}$$

$$\Rightarrow 2x+h$$