09-02-25 MTH 167-002N

1 Relations and Functions

1.1 Sets of Real Numbers and the Cartesian

Coordinate Plane

1.1.4 Exercises

page 14: 1, 3, 5, 11, 17, 23, 31

1.2 Relations

1.2.2 Exercises

page 29 (41): 1, 3, 7, 18, 21, 22, 27, 37, 41, 50

1.3 Introduction to Functions

1.3.1 Exercises

page 43 (55): 1, 2, 6, 14, 16, 39, 46

1.4 Function Notation

1.4.2 Exercises

page 63 (75): 1, 4, 15, 19, 31, 35, 37, 39, 67

1.2:18

1.2.2 Exercises

In Exercises 1 - 20, graph the given relation.

18.
$$\{(x,y) | x \le 3, y < 2\} \equiv \mathbb{R}$$

$$(1,0) \in \mathbb{R}$$

$$| \le 3, 0 < 2$$

$$(4,1) \notin \mathbb{R}$$

 $\frac{1}{2} \left(\frac{3}{12} \right)$ $\frac{1}{2} \left(\frac{3}{12} \right)$ $\frac{1}{2} \left(\frac{3}{12} \right)$

Textbook answer

18.

For each equation given in Exercises 41 - 52:

- Find the x- and y-intercept(s) of the graph, if any exist.
- Follow the procedure in Example 1.2.3 to create a table of sample points on the graph of the equation.
- Plot the sample points and create a rough sketch of the graph of the equation.
- Test for symmetry. If the equation appears to fail any of the symmetry tests, find a point on the graph of the equation whose reflection fails to be on the graph as was done at the end of Example 1.2.4

Jolve for
$$y^2 = 1 - \chi^2$$

$$y^2 = -1 + \chi^2$$

$$y = \pm \sqrt{-1 + \chi^2}$$

x - 4x = 1 x -1. 2- mis symmetry

the same

2-axis symmetry

1. No 2-axis symmetry

1.3

Definition 1.6. A relation in which each x-coordinate is matched with only one y-coordinate is said to describe y as a **function** of x.

memorize

$$R_{i} = \left\{ (1, 2), (2, 3), (4, 3) \right\}$$

$$\Rightarrow (1, 3) \cdot (4, 3)$$

$$\Rightarrow (1, 3) \cdot (4, 3)$$

$$\Rightarrow (1, 3) \cdot (4, 3)$$

$$\Rightarrow (1, 4) \cdot (4, 3)$$

$$\Rightarrow (1,$$

memorize

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function of x if and only if no two points lie on the same vertical line.

Memorize

Definition 1.7. Suppose F is a relation which describes y as a function of x.

- The set of the x-coordinates of the points in F is called the **domain** of F.
- The set of the y-coordinates of the points in F is called the **range** of F.

We can generalize this to any relation.

1.4

General definition: A <u>function</u> is a rule that associates to each element in one set, called the domain, a unique corresponding element in another set, called the range.

Definition: the implied domain of a function f(x) is the largest set of real numbers such that the function is well-defined, that is, so that f(x) can be calculated.

Let $f(x) = \frac{1}{x}$ Find the domain of f, $S(1) = \frac{1}{1} = 1$ $1 \in domain$ $f(100) = \frac{1}{100} = 100 \in domain$ $S(0) = \frac{1}{0}$ not defined

i. $0 \neq domain$

$\frac{1.0 \pm domain}{ddman} = \frac{1}{2} \times \left[x \pm 0 \right]$

Definition: a mathematical model is a set of equations and formulas that describe a real-world system.

Piecewise-defined function

$$f(x) = \begin{cases} x + 1 & for & x \le 0 \\ 5 & for & x > 0 \end{cases}$$

$$f(x) = \begin{cases} 5 & \text{for } x > 0 \\ y(0,5) & \text{hole} \end{cases}$$

$$(0,1) \text{ hole}$$

$$\chi = \begin{cases} -\infty, \infty = \mathbb{R} \\ 0 & \text{hole} \end{cases}$$

$$f(x) = \frac{1}{2}$$

$$= (-\infty, 0) \cup (0, \infty)$$

$$TI-84$$
 $Y_1 = (4+2)*(2 \le 0)$
+ $5*(2>0)$

Graph the relation
$$R = \{(x,y) \mid x=2\}$$

What is the rayge of R:

$$(-\infty, \infty) = |R| = \text{Jet of}$$

all real numbers

what is the domain of g?

To avoid division by 0, 2+4

To avoid taking the square root of g negative number 4-20

= 254

 $\Rightarrow domain = \{x \mid x \neq Y \text{ and } x \neq Y\} = \{x \mid x \neq Y\}$ $= (-\infty, Y)$

5 Does Rin #1 represent you a function of 2? why or wy not?

No. For x = 2, there are an infinite number of possible y values. The graph fails the vertical line test.