1 Relations and Functions

1.1 Sets of Real Numbers and the Cartesian

Coordinate Plane

1.1.4 Exercises

page 14: 1, 3, 5, 11, 17, 23, 31

1.2 Relations

1.2.2 Exercises

page 29 (41): 1, 3, 7, 18, 21, 22, 27, 37, 41, 50

1.1

Memorize

Definition 1.1. A set is a well-defined collection of objects which are called the 'elements' of the set. Here, 'well-defined' means that it is possible to determine if something belongs to the collection or not, without prejudice.

Memorize

Ways to Describe Sets

- 1. The Verbal Method: Use a sentence to define a set.
- 2. **The Roster Method:** Begin with a left brace '{', list each element of the set *only once* and then end with a right brace '}'.
- 3. The Set-Builder Method: A combination of the verbal and roster methods using a "dummy variable" such as x.

$$A = \{ 2, 4, 6 \}$$
 list (roster) notation
= \(\xi 6, 4, \cdot 3 = \{ 2, 2, 4, 6 \}

Verbal method: A is the set of even integers greater than 1 and less than 7

Set-builder notation $\{A = \{x | x \in \mathbb{Z}, x \text{ is even,} 1 < x < 7\}\}$

Memorize

Sets of Numbers

- 1. The **Empty Set**: $\emptyset = \{\} = \{x \mid x \neq x\}$. This is the set with no elements. Like the number '0,' it plays a vital role in mathematics."
- 2. The Natural Numbers: $\mathbb{N} = \{1, 2, 3, \ldots\}$ The periods of ellipsis here indicate that the natural numbers contain 1, 2, 3, 'and so forth'.
- 3. The Whole Numbers: $\mathbb{W} = \{0, 1, 2, \ldots\}$
- 4. The **Integers**: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- 5. The **Rational Numbers**: $\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z} \text{ and } b \in \mathbb{Z} \right\}$. Rational numbers are the <u>ratios</u> of integers (provided the denominator is not zero!) It turns out that another way to describe the rational numbers^b is:

 $\mathbb{Q} = \{x \mid x \text{ possesses a repeating or terminating decimal representation.}\}$

- 6. The **Real Numbers**: $\mathbb{R} = \{x \mid x \text{ possesses a decimal representation.}\}$
- 7. The Irrational Numbers: $\mathbb{P} = \{x \mid x \text{ is a non-rational real number.}\}$ Said another way, an <u>irrational number</u> is a decimal which neither repeats nor terminates.^c
- 8. The Complex Numbers: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R} \text{ and } i = \sqrt{-1}\}$ Despite their importance, the complex numbers play only a minor role in the text.^d

with $a < b$. rval Notation (a,b) $[a,b)$	Region on the Real Number a b a b
(a,b) $[a,b)$	
[a,b)	a b
	•
(a,b]	a b
[a,b]	a b
$(-\infty,b)$	$\stackrel{\longleftarrow}{\longleftarrow} \stackrel{\circ}{b}$
$(-\infty,b]$	← b
(a,∞)	$\stackrel{\circ}{a}$
	$(-\infty,b]$

 $[a,\infty)$

 $(-\infty, \infty)$

set notation $x \in A$ z is an element $x \notin A$ (member) of set A x is not an element of A

Memorize

 $\{x \mid x \ge a\}$

 $^{^{}a}...$ which, sadly, we will not explore in this text.

^bSee Section 9.2.

[°]The classic example is the number π (See Section 10.1), but numbers like $\sqrt{2}$ and 0.10100100010001 . . . are other fine representatives.

^dThey first appear in Section 3.4 and return in Section 11.7.

Definition 1.2. Suppose A and B are two sets.

- The intersection of A and B: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- The union of A and B: $A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ (or both)}\}\$

Inclusive or

Venn diagram

M = universal set

A CONTRACTOR OF THE PARTY OF TH

Memorize

Definition 1.3. Two points (a, b) and (c, d) in the plane are said to be

- symmetric about the x-axis if a = c and b = -d
- symmetric about the y-axis if a = -c and b = d
- symmetric about the origin if a=-c and b=-d

 $(1,3) \quad (1,3) \quad (1,3$

Pythagorean Theore m
$$d^{2} = (x_{2} - x_{1})^{2} + (y_{1} - y_{1})^{2}$$

$$d = \int (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$distance formula$$
Memorite

Pythagorean Theorem 8 mem

If a +b = c2, then $\angle C = 90^\circ$ = risht ansle $\Rightarrow \triangle ABC /J = right triansle$

If DABC is a right triangle

noth hypotenule C

Then a2+b2=c2

3 +4 = 9+16=25 $5^2 = 25$ 25 = 25 25 = 25 $3^2 + 4^2 = 5^2$ $4 = 15ht \triangle$

Memorize

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting $P(x_0, y_0)$ and $Q(x_1, y_1)$ is:

$$M = \left(\frac{x_0 + x_1}{2}, \frac{y_0 + y_1}{2}\right)$$

1.2 Memorize

Definition 1.4. A **relation** is a set of points in the plane.

This is equivalent to a set of ordered pairs of real numbers.

Memorize

Equations of Vertical and Horizontal Lines

- The graph of the equation x = a is a **vertical line** through (a, 0).
- The graph of the equation y = b is a **horizontal line** through (0, b).

Memorize

The Fundamental Graphing Principle

The graph of an equation is the set of points which satisfy the equation. That is, a point (x, y) is on the graph of an equation if and only if x and y satisfy the equation.

Memorize

Definition 1.5. Suppose the graph of an equation is given.

- A point on a graph which is also on the x-axis is called an x-intercept of the graph.
- A point on a graph which is also on the y-axis is called an y-intercept of the graph.

Graph the line 2x + 3y = 6 by finding and plotting the x-intercept ane y-intercept.

Memorize

Testing the Graph of an Equation for Symmetry

To test the graph of an equation for symmetry

- about the y-axis substitute (-x, y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the y-axis.
- about the x-axis substitute (x, -y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the x-axis.
- about the origin substitute (-x, -y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the origin.

$$y = 2^{2} \text{ test for symmetry}$$

$$y = (-2)^{2} = 2^{2} \implies y - a_{x}is \text{ symmetry}$$

$$-y = 2^{2} \implies y = -2^{2} \implies ho \text{ so } -a_{x}is \text{ symmetry}$$

$$-y = (-2)^{2} \implies -y = 2^{2}$$

$$\Rightarrow (-7)(-1) = (-1) 2^{2} \text{ ho origin symmetry}$$

$$\Rightarrow (-7)(-1) = (-1) 2^{2} \text{ ho origin symmetry}$$

$$\Rightarrow (-7)(-1) = (-1) 2^{2} \text{ ho origin symmetry}$$

f(2,4) $f(x)=x^2$

(-2,4)

-10

From the graph, it appears that the relation has only y-axis symmetry