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3.1 Graphs of Polynomials
3.1.1 Exercises
page 246: 3,7, 13, 21, 27

3.2 The Factor Theorem and the Remainder Theorem
3.2.1 Exercises
page 265:1, 3,9, 21, 35, 42

3.1:

In Exercises 21 - 26, given the pair of functions f and g, sketch the graph of y = g(x) by starting
with the graph of y = f(z) and using transformations. Track at least three points of your choice
through the transformations. State the domain and range of g.
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In Exercises 1 - 10, find the degree, the leading term, the leading coeflicient, the constant term and
the end behavior of the given polynomial.

6. s(t) = —4.9t% + vot + s

Degree is the highest exponent in the polynomial
Thus, the degree of s(t) is 2.

The leading term is the term (power of variable multiplied by a constant coefficient) with the highest power
Leading term is —4.9t2.

The leading coefficient is -4.9
The constant term is s.
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3.2
Long division of numbers ]
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Theorem 3.4. Polynomial Division: Suppose d(z) and p(z) are nonzero polynomials where
the degree of p is greater than or equal to the degree of d. There exist two unique polynomials,
¢(z) and r(x), such that p(z) = d(z) q(x) + r(x), where either r(z) = 0 or the degree of r is
strictly less than the degree of d.
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Memorize the theorem, understand the proof

Theorem 3.5. The Remainder Theorem: Suppose p is a polynomial of degree at least 1
and c is a real number. When p(z) is divided by x — ¢ the remainder is p(c).
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