3.1 Graphs of Polynomials 3.1.1 Exercises page 246: 3, 7, 13, 21, 27

16 textbook sections remaining

13 MTH 161 class meetings before final exam 16/13=1.2308

1 or 2 sections each class meeting

Exam 2		stem & leaf	_	
34.76923	mean			A-0
28	median	8	03	B-2
23.85905	st. dev	7		C-0
5	min	6		D-0
83	max	5	9	F- 11
13	count	4	3	
		3	1	
		2	01689	
		1	25	
		0	5	

Exam 1		stem & leaf		
39.25	mean			A-0
28.5	median			B-0
19.660 13	st. dev	7	26	C-2
15	min	6	6	D-1
76	max	5		F- 9
12	count	4	4	
		3	4	
		2	577889	
		1	5	

3.1 Memorize

Definition 3.1. A **polynomial function** is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are real numbers and $n \geq 1$ is a natural number. The domain of a polynomial function is $(-\infty, \infty)$.

memorize

Definition 3.2. Suppose f is a polynomial function.

- Given $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ with $a_n \neq 0$, we say
 - The natural number n is called the **degree** of the polynomial f.
 - The term $a_n x^n$ is called the **leading term** of the polynomial f.
 - The real number a_n is called the **leading coefficient** of the polynomial f.
 - The real number a_0 is called the **constant term** of the polynomial f.
- If $f(x) = a_0$, and $a_0 \neq 0$, we say f has degree 0.
- If f(x) = 0, we say f has no degree.^a

Memorize

^aSome authors say f(x) = 0 has degree $-\infty$ for reasons not even we will go into.

End Behavior of functions $f(x) = ax^n$, n even.

Suppose $f(x) = ax^n$ where $a \neq 0$ is a real number and n is an even natural number. The end behavior of the graph of y = f(x) matches one of the following:

- for a > 0, as $x \to -\infty$, $f(x) \to \infty$ and as $x \to \infty$, $f(x) \to \infty$
- for a < 0, as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to \infty$, $f(x) \to -\infty$

Graphically:

memorize

End Behavior of functions $f(x) = ax^n$, n odd.

Suppose $f(x) = ax^n$ where $a \neq 0$ is a real number and $n \geq 3$ is an odd natural number. The end behavior of the graph of y = f(x) matches one of the following:

- for a > 0, as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to \infty$, $f(x) \to \infty$
- for a < 0, as $x \to -\infty$, $f(x) \to \infty$ and as $x \to \infty$, $f(x) \to -\infty$

Graphically:

Supplied

Theorem 3.1. The Intermediate Value Theorem (Zero Version): Suppose f is a continuous function on an interval containing x = a and x = b with a < b. If f(a) and f(b) have different signs, then f has at least one zero between x = a and x = b; that is, for at least one real number c such that a < c < b, we have f(c) = 0.

$$\begin{array}{c|c}
 & (b,f|b) \\
 & (b,f|b) \\
 & (a,f(a)) \\
 & f(a) < 0
\end{array}$$

Know this process

Steps for Constructing a Sign Diagram for a Polynomial Function Suppose f is a polynomial function.

- 1. Find the zeros of f and place them on the number line with the number 0 above them.
- 2. Choose a real number, called a **test value**, in each of the intervals determined in step 1.
- 3. Determine the sign of f(x) for each test value in step 2, and write that sign above the corresponding interval.

$$f(x) = (x-3)(x+4)(x-6)^{2}$$

$$des f = 4$$

$$leadins term = x^{4}$$

$$leadins coef = 1$$

$$5(-5) = (-5-3)(-5+4)(-5-6)^{2}$$

Memorize

Theorem 3.2. End Behavior for Polynomial Functions: The end behavior of a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ with $a_n \neq 0$ matches the end behavior of $y = a_n x^n$.

Memorize

Definition 3.3. Suppose f is a polynomial function and m is a natural number. If $(x-c)^m$ is a factor of f(x) but $(x-c)^{m+1}$ is not, then we say x=c is a zero of **multiplicity** m.

Memorize

Theorem 3.3. The Role of Multiplicity: Suppose f is a polynomial function and x = c is a zero of multiplicity m.

- If m is even, the graph of y = f(x) touches and rebounds from the x-axis at (c, 0).
- If m is odd, the graph of y = f(x) crosses through the x-axis at (c, 0).