02-17-25 MTH 161-C06N

1.6 Graphs of Functions

1.6.2 Exercises

page 107: 1, 7, 9, 14, 21, 24, 32, 75

Exam 1		stem & leaf		
39.25	mean			A-0
28.5	median			B-0
19.66013	st. dev	7	26	C-2
15	min	6	6	D-1
76	max	5		F- 9
12	count	4	4	
		3	4	
		2	577889	
		1	5	

1.6 Memorize

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the point (x, y) is on the graph of f if and only if y = f(x).

memorize

Definition 1.9. The **zeros** of a function f are the solutions to the equation f(x) = 0. In other words, x is a zero of f if and only if (x, 0) is an x-intercept of the graph of y = f(x).

Memorize

Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

- about the y-axis if and only if f(-x) = f(x) for all x in the domain of f.
- about the origin if and only if f(-x) = -f(x) for all x in the domain of f.

- about the y-axis if and only if f(-x) = f(x) for all x in the domain of f.
- about the origin if and only if f(-x) = -f(x) for all x in the domain of f.

$$f(x) = x^{2}$$

$$f(-x) = (-x)^{2} = x^{2} = f(x)$$

$$f(x) = (-x)^{2} = x^{2} = f(x)$$

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$g(x) = x^{3}$$

 $g(-x) = (-x)^{3} = (-1)^{3}x^{3} = -2^{3} = -g(x)$
i, $g(x)$ is odd (uvisins ymmetry)

Memorize

Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

- increasing on I if and only if f(a) < f(b) for all real numbers a, b in I with a < b.
- decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.
- constant on I if and only if f(a) = f(b) for all real numbers a, b in I.

The graph of y = f(x)

Memorize

Definition 1.11. Suppose f is a function with f(a) = b.

• We say f has a **local maximum** at the point (a, b) if and only if there is an open interval I containing a for which $f(a) \ge f(x)$ for all x in I. The value f(a) = b is called 'a local maximum value of f' in this case.

- we say f has a local maximum at the point (a, b) if and only it there is an open interval I containing a for which $f(a) \geq f(x)$ for all x in I. The value f(a) = b is called 'a local maximum value of f in this case.
- We say f has a **local minimum** at the point (a,b) if and only if there is an open interval I containing a for which $f(a) \leq f(x)$ for all x in I. The value f(a) = b is called 'a local
- minimum value of f' in this case.

 Olobal (Absolute)

 The value b is called the **maximum** of f if $b \ge f(x)$ for all x in the domain of f.

 The value b is called the **minimum** of f if $b \le f(x)$ for all x in the domain of f.

Using calculus

$$15x^2 - 30x + 8 = 0$$
, Solution is: $\frac{1}{15}\sqrt{7}\sqrt{15} + 1$, $1 - \frac{1}{15}\sqrt{7}\sqrt{15}$

$$\frac{1}{15}\sqrt{7}\sqrt{15} + 1 \approx 1.6831$$

 $1 - \frac{1}{15}\sqrt{7}\sqrt{15} \approx 0.31687$