3.3 Real Zeros of Polynomials

3.3.3: Exercises

page 280: 1, 31, 37, 48

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4.1 Exercises

page 295: 1, 11, 13, 23, 27, 50

\_\_\_\_\_\_

## Memorize

**Definition 3.4.** The imaginary unit i satisfies the two following properties

1. 
$$i^2 = -1$$

2. If c is a real number with  $c \ge 0$  then  $\sqrt{-c} = i\sqrt{c}$ 

= isc , < ≥0

## Memorize

**Definition 3.5.** A **complex number** is a number of the form a + bi, where a and b are real numbers and i is the imaginary unit.

$$C = E = set$$
 of all complex numbers
$$R = R = set$$
 of all real numbers
$$E = \left\{ a + b \right\} \left\{ a \in R, b \in R, \lambda^{2} = -1 \right\}$$

$$\left( 2 + 3 \lambda \right) + \left( 5 - \lambda \right) = (2 + 5) + (3 - 1) \lambda$$

$$(2+3i) + (3-7) = (4+3) + (3-7) n$$
  
=  $3+2i$ 

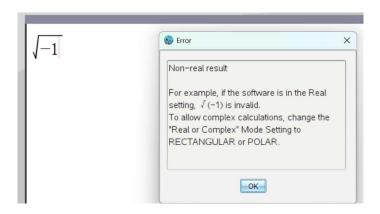
Def 
$$(a+bi) + (c+di)$$
  
=  $(a+b) + (b+d)i$   
Def  $(a+bi) - (c+di)$   
=  $(a-c) + (b-d)i$ 

$$(2+31) (4-21)$$

$$= 8+121-41-61^{2}$$

$$= 8+81-6(-1)$$

$$= (1+81)$$



$$R = \emptyset$$

$$n \in \mathbb{R} \Rightarrow n = n + 0 \text{ i.e.} \emptyset$$

$$\text{memorize}$$

$$\text{Def Let } Z = a + b \text{ i.e.} \emptyset$$

$$\text{conjugate of } Z = \overline{Z} = a - b \text{ i.e.}$$

$$\frac{2-\lambda}{3+\lambda} = \begin{pmatrix} 2-\lambda \\ 3+\lambda \end{pmatrix} \begin{pmatrix} 3-\lambda \\ 3-\lambda \end{pmatrix}$$

$$= \frac{(2-\lambda)(3-\lambda)}{(3+\lambda)(3-\lambda)}$$

$$= \frac{6-3\lambda-2\lambda+\lambda^2}{3^2-\lambda^2}$$

$$= \frac{6-5\lambda-1}{9-(-1)}$$

$$= \frac{5-5\lambda}{10}$$

$$= \frac{1-\lambda}{2} = \frac{1}{2} - \begin{pmatrix} \frac{1}{2} \end{pmatrix} \lambda \in \mathbb{C}$$

Remember (a+b)(a-b)  $= a^2-b^2$ 

want 62 - 4ac <0

want 
$$b^{-} - 4ac < 0$$
Let  $b = 3$ ,  $a = 4$ ,  $(=)$ 

$$9 - (4)(4)(1)$$

$$= 9 - (6)(4)(4)(1)$$

$$= 9 - (6)(4)(4)(1)$$

$$= 9 - (6)(4)(4)(1)$$

$$= 9 - (6)(4)(4)(1)$$

$$= 10 + 10 + 10 + 10 + 10$$

$$= 10 + 10 + 10 + 10$$

$$= 10 + 10 + 10 + 10$$

$$= 10 + 10 + 10 + 10$$

$$= 10 + 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

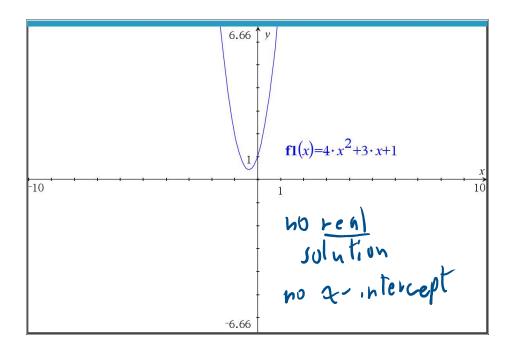
$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10 + 10$$

$$= 10 + 10$$



## supplied

Theorem 3.13. The Fundamental Theorem of Algebra: Suppose f is a polynomial function with complex number coefficients of degree  $n \ge 1$ , then f has at least one complex zero.

# Supplied

Theorem 3.14. Complex Factorization Theorem: Suppose f is a polynomial function with complex number coefficients. If the degree of f is n and  $n \ge 1$ , then f has exactly n complex zeros, counting multiplicity. If  $z_1, z_2, \ldots, z_k$  are the distinct zeros of f, with multiplicities  $m_1, m_2, \ldots, m_k$ , respectively, then  $f(x) = a(x - z_1)^{m_1} (x - z_2)^{m_2} \cdots (x - z_k)^{m_k}$ .

## Memorize

**Theorem 3.15. Conjugate Pairs Theorem:** If f is a polynomial function with real number coefficients and z is a zero of f, then so is  $\overline{z}$ .

#### Memorize

**Theorem 3.16. Real Factorization Theorem:** Suppose f is a polynomial function with real number coefficients. Then f(x) can be factored into a product of linear factors corresponding to the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f.

### 3.4.1 Exercises

In Exercises 1 - 10, use the given complex numbers z and w to find and simplify the following. Write your answers in the form a + bi.

 $\bullet$   $\frac{1}{z}$ 

 $\bullet \frac{z}{w}$ 

 $\bullet$   $\frac{u}{2}$ 

• <u>z</u>

•  $z\overline{z}$ 

•  $(\overline{z})^2$ 

4. z = 4i, w = 2 - 2i

3.4

In Exercises 27 - 48, find all of the zeros of the polynomial then completely factor it over the real numbers and completely factor it over the complex numbers.

28. 
$$f(x) = x^2 - 2x + 5$$

$$\chi = 2 \pm \sqrt{4-(4)(1)(5)}$$

$$\chi = \frac{1 \pm \sqrt{4 - 20}}{2}$$

$$F(x) = (x - (1 + 2\lambda))(x - (1 - 2\lambda))$$

$$F(x) = (x - 1) - 2\lambda)(x - 1) + 2\lambda$$

$$F(x) = (1x - 1)^{2} - (2\lambda)^{2}$$

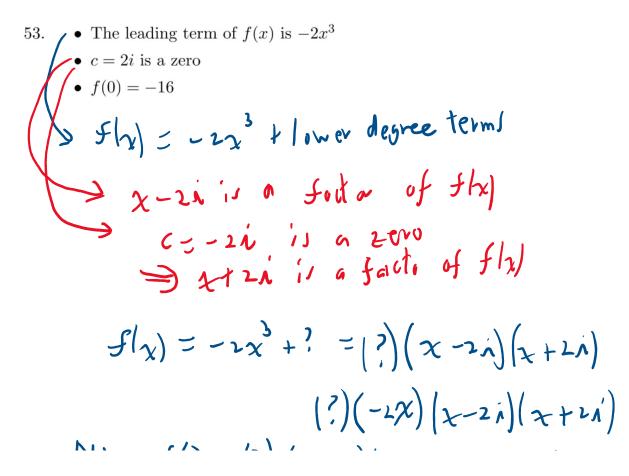
$$F(x) = (x - 1)^{2} + 4$$
Touthook answer

Textbook answer

28. 
$$f(x) = x^2 - 2x + 5 = (x - (1+2i))(x - (1-2i))$$
  
Zeros:  $x = 1 \pm 2i$ 

3.4

In Exercises 49 - 53, create a polynomial f with real number coefficients which has all of the desired characteristics. You may leave the polynomial in factored form.



$$\begin{aligned} &(:)(-2x)(x-2i)(x+2i) \\ &\text{Now } f(0) = (?)(-2i0)(0-2i)(0+2i) = 0 \\ &\text{but we want } f(0) = -16 \\ &\text{Try } f(x) = (-2x)(x-2i)(x+2a) \\ &= (-2x)(x^2-4i^2)-16 \\ &= (-2x)(x^2+4)-16 \\ &= (-2x)(x^2+4)-16 \end{aligned}$$

Textbook answer

53. 
$$f(x) = -2(x-2i)(x+2i)(x+2)$$

Finish at home

$$\frac{-2x}{x^{2}+4} = \frac{-2x^{3}+0x^{2}-8x+16}{-2x^{3}-8x}$$

16

1. 2 +4 is not a factor

Try asoin