2.3 Quadratic Functions

2.3.1 Exercises

page 200: 1, 4, 11, 21, 26

2.4 Inequalities with Absolute Value and Quadratic Functions 2.4.1 Exercises page 220: 1, 8, 17, 34, 36

memorize

Graphical Interpretation of Equations and Inequalities

Suppose f and g are functions.

- The solutions to f(x) = g(x) are the x values where the graphs of y = f(x) and y = g(x) intersect.
- The solution to f(x) < g(x) is the set of x values where the graph of y = f(x) is below the graph of y = g(x).
- The solution to f(x) > g(x) is the set of x values where the graph of y = f(x) above the graph of y = g(x).

Example 2.4.2. The graphs of f and g are below. (The graph of y = g(x) is bolded.) Use these graphs to answer the following questions.

1. Solve f(x) = g(x).

 $\chi = \pm 1$

2. Solve f(x) < g(x).

(-0) V (1,00)

3. Solve $f(x) \ge g(x)$.

[-),]

Memorize

Theorem 2.4. Inequalities Involving the Absolute Value: Let c be a real number.

- For c > 0, |x| < c is equivalent to -c < x < c.
- For c > 0, $|x| \le c$ is equivalent to $-c \le x \le c$.

- For c > 0, |x| < c is equivalent to -c < x < c.
- For c > 0, $|x| \le c$ is equivalent to $-c \le x \le c$.
- For $c \le 0$, |x| < c has no solution, and for c < 0, $|x| \le c$ has no solution.
- For $c \ge 0$, |x| > c is equivalent to x < -c or x > c.
- For $c \ge 0$, $|x| \ge c$ is equivalent to $x \le -c$ or $x \ge c$.
- For c < 0, |x| > c and $|x| \ge c$ are true for all real numbers.

Numeric test value method

Steps for Solving a Quadratic Inequality

- 1. Rewrite the inequality, if necessary, as a quadratic function f(x) on one side of the inequality and 0 on the other.
- 2. Find the zeros of f and place them on the number line with the number 0 above them.
- 3. Choose a real number, called a **test value**, in each of the intervals determined in step 2.
- 4. Determine the sign of f(x) for each test value in step 3, and write that sign above the corresponding interval.
- 5. Choose the intervals which correspond to the correct sign to solve the inequality.

Solve
$$f(x) \le 4$$

 $x(1) = x^{2} - 2x - 3$
 $2^{2} - 2x - 3 \le 4$ Let $g(x) = x^{2} - 2x - 7$
 $x^{2} - 2x - 3 - 4 \le 0$
 $x^{2} - 2x - 7 \le 0$
 $x = 2 + \sqrt{4 - 4}(1)(-7)$

Solve
$$J(x) > 0$$

 $J_{1}x + J_{2}x = (x - 5)(x + 7) = x^{2} + other Juff$
 $J_{2}x + J_{2}x = 0$
 $J_{3}x + J_{2}x = 0$
 $J_{3}x + J_{3}x = 0$
 $J_{3}x + J_{3}$

 $z = \frac{-10 \pm 255}{-10}$

MTH-161-004N Page 4

$$\chi = -\frac{5 \pm 5s}{-4}$$

$$\left(-\frac{5-5s}{-4}\right) - \frac{5+5s}{4}$$

(-5-sqrt(5))/(-4)=1.809016994374947

(-5+sqrt(5))/(-4)=0.690983005625052

Algebraic method

Solve
$$f(x) < 0$$

$$f(x) = (x-1)(x+8)$$

$$cole (x-1) > 0 \text{ and } (x+8) < 0$$

$$2 > 1 \text{ and } x < -8$$

$$no sulution$$

$$H$$

(91-2) 2-1 < 0 and x + 8 > 0 2 < 1 and x > -8 -8 301 = 10