1.6 Graphs of Functions

1.6.2 Exercises

page 107: 1, 7, 9, 14, 21, 24, 32, 75

Exam 1		stem & leaf		
36.8	mean	9	6	A-1
34	median	8		B-0
21.10039	st. dev	7		C-0
15	min	6	9	D-1
96	max	5		F-13
15	count	4	078	
		3	447	
		2	0349	
		1	579	

1.6

Memorize

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the point (x, y) is on the graph of f if and only if y = f(x).

Example 1.6.2. Graph:
$$f(x) = \begin{cases} 4 - x^2 & \text{if } x < 1 \\ x - 3, & \text{if } x \ge 1 \end{cases}$$

$$y = y - x$$

$$(1, -2)$$

$$y = (4 - x^2)(x \ge 1) + (x - 3)(x \ge 1)$$

$$x \ge 1$$

$$(1, -2)$$

$$y = (4 - x^2)(x \ge 1) + (x - 3)(x \ge 1)$$

$$x \ge 1$$

$$(1, -2)$$

$$y = (4 - x^2)(x \ge 1) + (x - 3)(x \ge 1)$$

$$(4 - x^2)(x \ge 1) + (x - 3)(x \ge 1)$$

$$(4 - x^2)(x \ge 1) + (x - 3)(x \ge 1)$$

MTH-161-004N Page 1

x 2/

 $(4-x^{2})(0) + (x-3)(1)$

Memorize

Definition 1.9. The **zeros** of a function f are the solutions to the equation f(x) = 0. In other words, x is a zero of f if and only if (x, 0) is an x-intercept of the graph of y = f(x).

Memorize

Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

ever

• about the y-axis if and only if f(-x) = f(x) for all x in the domain of f.

• about the origin if and only if f(-x) = -f(x) for all x in the domain of f.

ZTX2

We cannot have x-axis symmetry for y as a function of x. Such a relation would fail the vertical line test

Google Gemini

Please give me three examples of testing a graph for symmetry.

Absolutely! Here are three examples of testing a graph for symmetry, focusing on different types of symmetry:

1. Testing for Symmetry with Respect to the Y-Axis (Even Function)

- Concept: A graph is symmetric with respect to the y-axis if replacing x with -x results in the same equation.
- Example: Consider the equation $y = x^2 + 2$.
 - **Test:** Replace *x* with -*x*:
 - $y = (-x)^2 + 2$
 - $y = x^2 + 2$
 - Result: The equation remains unchanged. Therefore, the graph of y = x² + 2 is symmetric
 with respect to the y-axis

2. Testing for Symmetry with Respect to the X-Axis

- Concept: A graph is symmetric with respect to the x-axis if replacing y with -y results in the same equation.
- **Example:** Consider the equation $x = y^2$.
 - Test: Replace y with -y:

2. Testing for Symmetry with Respect to the X-Axis

- Concept: A graph is symmetric with respect to the x-axis if replacing y with -y results in the
- Example: Consider the equation $x = y^2$.
 - Test: Replace y with -y:
 - $x = (-y)^2$
 - $x = y^2$
 - Result: The equation remains unchanged. Therefore, the graph of $x = y^2$ is symmetric with respect to the x-axis.

3. Testing for Symmetry with Respect to the Origin (Odd Function)

- Concept: A graph is symmetric with respect to the origin if replacing both x with -x and y with -y results in the same equation (or an equivalent equation where the entire equation has
- Example: Consider the equation $y = x^3$.
 - Test: Replace x with -x and y with -y:
 - $-y = (-x)^3$

 - $y = x^3$ (multiply both sides by -1)
 - Result: The equation, after manipulation, is the same as the original. Therefore, the graph of $y = x^3$ is symmetric with respect to the origin.

Memorize

Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

- increasing on I if and only if f(a) < f(b) for all real numbers a, b in I with a < b.
- decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.
- **constant** on I if and only if f(a) = f(b) for all real numbers a, b in I.

Increasing on interval (-4,-2)

(3,4)

(5,6)

Decreasing on interval (-2,3) Constant on interval (4,5)

The graph of y = f(x)

Memorize

Definition 1.11. Suppose f is a function with f(a) = b.

Memorize

Definition 1.11. Suppose f is a function with f(a) = b.

relative

• We say f has a **local maximum** at the point (a,b) if and only if there is an open interval I containing a for which $f(a) \geq f(x)$ for all x in I. The value f(a) = b is called 'a local maximum value of f in this case. Let f if f in the case.

• We say f has a **local minimum** at the point (a,b) if and only if there is an open interval I containing a for which $f(a) \leq f(x)$ for all x in I. The value f(a) = b is called 'a local minimum value of f' in this case f in the case f in the case f in the value f is called the maximum of f if f if f if f in the domain of f.

• The value b is called the **minimum** of f if $b \le f(x)$ for all x in the domain of f.

