- 1 Relations and Functions
- 1.1 Sets of Real Numbers and the Cartesian Coordinate

Plane

1.1.4 Exercises page 14: 1, 3, 5, 11, 17, 23, 31

1.2 Relations

1.2.2 Exercises

page 29: 1, 3, 7, 18, 21, 22, 27, 37, 41, 50

Your Name MTH 161-004N quiz 1

Open homework, closed book, closed notes, calculator OK.

1.1:31

31. Find all of the points on the y-axis which are 5 units from the point (-5,3).

$$(-5,3)$$
 \rightarrow $(0,3)$

$$S = \int (0, y) 2$$

$$S = \int (0 - (-s))^{2} + (y - s)^{2}$$

$$S = \int (0 - (-s))^{2} + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0, y) + (y - s)^{2}$$

$$S = \int (0,$$

1.1:3

In Exercises 2 - 7, find the indicated intersection or union and simplify if possible. Express your answers in interval notation.

3. $(-1,1) \cup [0,6]$

1.1:11

In Exercises 8 - 19, write the set using interval notation.

11. $\{x \mid x \neq 0, 2\}$

1.2 Memorize

Definition 1.4. A **relation** is a set of points in the plane.

Example 1.2.1. Graph the following relations.

2.
$$HLS_1 = \{(x,3) \mid -2 \le x \le 4\}$$

The graph of R

$$R = \{(x, y) \mid 1 < x \le 3\}$$

Memorize

Equations of Vertical and Horizontal Lines

- The graph of the equation x = a is a **vertical line** through (a, 0).
- The graph of the equation y = b is a **horizontal line** through (0, b).

memorize

The Fundamental Graphing Principle

The graph of an equation is the set of points which satisfy the equation. That is, a point (x, y) is on the graph of an equation if and only if x and y satisfy the equation.

$$y = x^{3} - 4x^{2} + 2$$
Is the point (0, 10) on the graph?

Plus in $x = 0$, $y = 10$

Check if the equation is satisfied (True)

$$10 \stackrel{?}{=} 0^{3} - 4(0^{2}) + 2$$

$$10 = 0^{3} - 4(0^{2}) + 2$$

 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{2}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4(0^{3}) + 2$
 $10 = 0^{3} - 4$

Memorize

Definition 1.5. Suppose the graph of an equation is given.

- A point on a graph which is also on the x-axis is called an **x-intercept** of the graph.
- A point on a graph which is also on the y-axis is called an y-intercept of the graph.

Memorize

Finding the Intercepts of the Graph of an Equation

Given an equation involving x and y, we find the intercepts of the graph as follows:

- x-intercepts have the form (x,0); set y=0 in the equation and solve for x.
- y-intercepts have the form (0, y); set x = 0 in the equation and solve for y.

Use 20-intercept and y-intercept
to exapt the line given by
$$2x+3y=6$$

 $x=0 \Rightarrow 210)+3y=6$

$$x = 0 \Rightarrow 2(0) + 3 \neq = 6$$

$$2y = 6$$

$$(0,2)$$

$$y = 0 \Rightarrow 2x + 3(0) = 6$$

$$2x = 6$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

$$(10,2)$$

Memorize

Testing the Graph of an Equation for Symmetry

To test the graph of an equation for symmetry

- about the y-axis substitute (-x, y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the y-axis.
- about the x-axis substitute (x, -y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the x-axis.
- about the origin substitute (-x, -y) into the equation and simplify. If the result is equivalent to the original equation, the graph is symmetric about the origin.