01-23-25 MTH 161

- 1 Relations and Functions
- 1.1 Sets of Real Numbers and the Cartesian Coordinate Plane
- 1.1.4 Exercises

page 14: 1, 3, 5, 11, 17, 23, 31

1.1

Memorize

Definition 1.1. A set is a well-defined collection of objects which are called the 'elements' of the set. Here, 'well-defined' means that it is possible to determine if something belongs to the collection or not, without prejudice.

Ways to Describe Sets

- 1. The Verbal Method: Use a sentence to define a set.
- 2. **The Roster Method:** Begin with a left brace '{', list each element of the set only once and then end with a right brace '}'.
- 3. The Set-Builder Method: A combination of the verbal and roster methods using a "dummy variable" such as x.

Ist notation

Verbal = A = set of all kurhale numbers
greater than I and less than 7

XEA 2; son element (member)
of set A

2 EA, SEA

 $A=\{x\mid x \text{ is ahnih resev, }\}$

B = set of all stars in our salaxy c = { coffee, Vivsinia, T, 3, dog}

Memorize

Sets of Numbers

- 1. The **Empty Set**: $\emptyset = \{\} = \{x \mid x \neq x\}$. This is the set with no elements. Like the number '0,' it plays a vital role in mathematics.^a
- 2. The Natural Numbers: $\mathbb{N} = \{1, 2, 3, ...\}$ The periods of ellipsis here indicate that the natural numbers contain 1, 2, 3, 'and so forth'.
- 3. The Whole Numbers: $\mathbb{W} = \{0, 1, 2, \ldots\}$
- 4. The **Integers**: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- 5. The **Rational Numbers**: $\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z} \text{ and } b \in \mathbb{Z} \right\}$. Rational numbers are the <u>ratios</u> of integers (provided the denominator is not zero!) It turns out that another way to describe the rational numbers^b is:

 $\mathbb{Q} = \{x \mid x \text{ possesses a repeating or terminating decimal representation.}\}$

- 6. The **Real Numbers**: $\mathbb{R} = \{x \mid x \text{ possesses a decimal representation.}\}$
- 7. The Irrational Numbers: $\mathbb{P} = \{x \mid x \text{ is a non-rational real number.}\}$ Said another way, an <u>ir</u>rational number is a decimal which neither repeats nor terminates.^c
- 8. The Complex Numbers: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R} \text{ and } i = \sqrt{-1}\}$ Despite their importance, the complex numbers play only a minor role in the text.^d

MTH-161-004N Page 2

°The classic example is the number π (See Section 10.1), but numbers like $\sqrt{2}$ and 0.101001000100001... are other fine representatives.

 d They first appear in Section 3.4 and return in Section 11.7.

i²

^a...which, sadly, we will not explore in this text.

^bSee Section 9.2.

Interval Notation

Let a and b be real numbers with a < b.

Set of Real Numbers	Interval Notation	Region on the Real Number Line
$\{x \mid a < x < b\}$	(a,b)	$\stackrel{\circ}{a} \stackrel{\circ}{b}$
$\{x \mid a \le x < b\}$	[a,b)	$\stackrel{\bullet}{a} \stackrel{\circ}{b}$
$\{x \mid a < x \le b\}$	(a,b]	a b
$\{x \mid a \le x \le b\}$	[a,b]	$\stackrel{\bullet}{a} \stackrel{\bullet}{b}$
$\{x x < b\}$	$(-\infty,b)$	$\stackrel{\longleftarrow}{\longleftrightarrow} \overset{\circ}{b}$
$\{x x \leq b\}$	$(-\infty,b]$	←
$\{x x>a\}$	(a,∞)	$\stackrel{\circ}{a} \longrightarrow$
$\{x x \geq a\}$	$[a,\infty)$	$\stackrel{\bullet}{a}$
\mathbb{R}	$(-\infty,\infty)$	←

Memorize

Definition 1.2. Suppose A and B are two sets.

- The intersection of A and B: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- The union of A and B: $A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ (or both)}\}\$

Vehn diagram $A \subseteq B$ $A \subseteq B$ $A \subseteq A$ $A \subseteq B$ $A \subseteq A \subseteq B$ $A \subseteq B \subseteq A$ $A \subseteq B \subseteq B$ $A \subseteq B \subseteq A$ $A \subseteq B \subseteq B$ $A \subseteq B \subseteq A$ $A \subseteq B \subseteq B$ $A \subseteq B \subseteq A$ $A \subseteq B \subseteq B$ $A \subseteq B$

Tesseract

Definition 1.3. Two points (a, b) and (c, d) in the plane are said to be

- symmetric about the x-axis if a = c and b = -d
- symmetric about the y-axis if a = -c and b = d
- symmetric about the origin if a = -c and b = -d

$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = d^2 \left(\begin{array}{c} P y th \\ Thm. \end{array} \right)$$

$$d = \int (x_2 - x_1)^2 + (y_2 - y_1)^2 \quad \text{memorite}$$

$$div \text{ fonce for mula}$$

Memorize

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting $P(x_0, y_0)$ and $Q(x_1, y_1)$ is:

$$M = \left(\frac{x_0 + x_1}{2}, \frac{y_0 + y_1}{2}\right)$$

1.1

In Exercises 2 - 7, find the indicated intersection or union and simplify if possible. Express your answers in interval notation.

2.
$$(-1,5] \cap [0,8)$$

To,5) interval notation
$$\{x \in |R| | 0 \le x \le s\}$$

In Exercises 8 - 19, write the set using interval notation.

10.
$$\{x \mid x \neq -3, 4\}$$

