

1. Operations with Real Numbers

1.1 Algebraic Expressions

1.1 Exercise Set, page 40 (22): 1, 3, 5, 7, 9, 10, 12, 22, 27

1.2 Integers

1.2 Exercise Set, page 69 (51): 1, 2, 6, 18, 25, 32, 39, 40, 48

1.3 Fractions

1.3 Exercise Set, page 90 (72): 5, 8, 20, 27, 44, 49, 56

1.4 Decimals

1.4 Exercise Set, page 112 (94): 1, 2, 4, 5, 9, 10, 18, 19, 25, 31, 33, 42, 44

1.2

Memorize

Integers

The whole numbers and their opposites are called the **integers**.

The integers are the numbers

$$\bullet \bullet | \bullet -3, -2, -1, 0, 1, 2, 3 \bullet \bullet$$

... means "and so on", following the obvious pattern

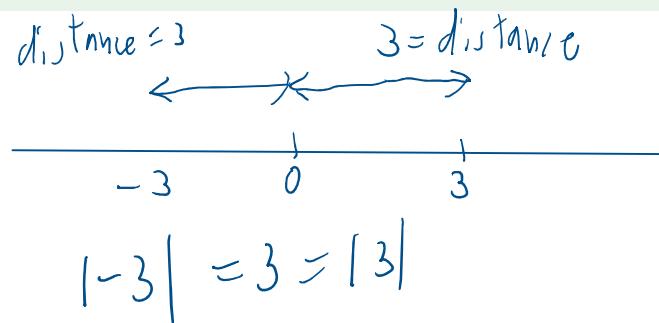
Memorize

Opposite

The **opposite** of a number is the number that is the same distance from zero on the number line but on the opposite side of zero.

3 is the opposite of -3

Memorize


Geometric definition

Absolute Value

The absolute value of a number is its distance from 0 on the number line.

The absolute value of a number n is written as $|n|$.

The absolute value of a number n is written as $|n|$.

supplied

Algebraic definition $|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$

$$0 \geq 0 \Rightarrow |0| = 0$$

$$3 \geq 0 \Rightarrow |3| = 3$$

(implies)

$$-3 < 0 \Rightarrow |-3| = -(-3) = 3$$

Memorize

Property of Absolute Value

$|n| \geq 0$ for all numbers

Absolute values are always greater than or equal to zero!

Grouping Symbols

Parentheses	()
Brackets	[]
Braces (curly braces)	{ }
Absolute value	

$$[(2+3) + (7-1)] \times (3+2)$$

Here, using brackets or parentheses does not change the meaning.

$$35 - |-5| \quad \left| \begin{array}{l} 35 - (-5) \\ = 35 + 5 \end{array} \right.$$

$$\begin{array}{l}
 = 35 - 5 \\
 = \boxed{30}
 \end{array}
 \quad
 \begin{array}{l}
 = 35 + 5 \\
 = \boxed{40}
 \end{array}$$

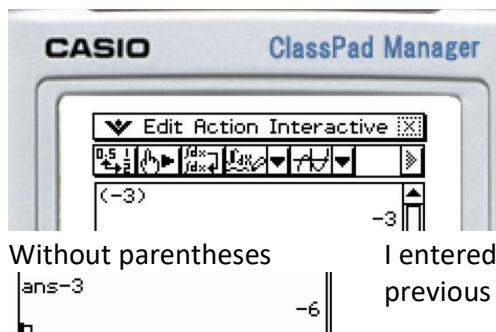
Multiplication notation

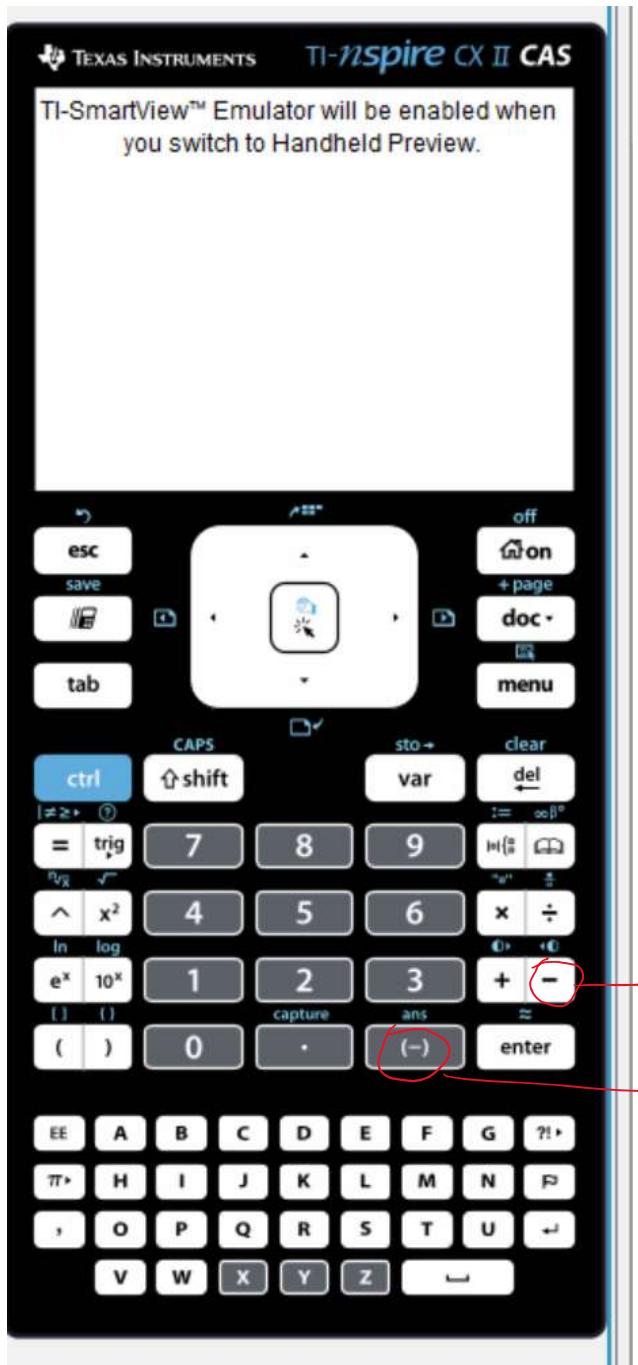
$$3 \times 5 = (3)(5) = 3 \bullet 5 = 3 * 5 = 15$$

Multiplication of integers is repeated addition.

$$3 \times 5 = 3 + 3 + 3 + 3 + 3$$

5 terms


memorize


Multiplication of Signed Numbers

For multiplication of two signed numbers:

Same signs	Product	Example
Two positives Two negatives	Positive Positive	$7 \cdot 4 = 28$ $-8(-6) = 48$

Different signs	Product	Example
Positive dot negative Negative dot positive	Negative Negative	$7(-9) = -63$ $-5 \cdot 10 = -50$

Windows scientific calculator

I entered minus 3, it inserted or already had a zero.

I entered 3, then toggled +/- key

Memorize

Multiplication and Division of Signed Numbers

For multiplication and division of two signed numbers:

- If the signs are the same, the result is positive.
- If the signs are different, the result is negative.

Same signs	Result
Two positives	Positive
Two negatives	Positive

If the signs are the same, the result is positive.

Different signs	Result
Positive and negative	Negative
Negative and positive	Negative

If the signs are different, the result is negative.

Evaluate and simplify

$$\frac{(-2)(4)(-5)}{-10} = -\cancel{(-2)(5)(4)}{10} = -\left(\frac{10}{10}\right)(4) = (-1)(4) = \boxed{-4}$$

$$\frac{(-)(-)}{(-)} = \frac{+}{-} = -$$

Division Notation

10 divided by 5 equals 2

$$10 \div 5 = 2$$

$$\frac{10}{5} = 2$$

$$10/5 = 2$$

slpp- notation

$$10/5 x = \left\{ \begin{array}{l} \frac{10x}{5} ? \\ \frac{10}{5x} ? \end{array} \right.$$

$$\begin{array}{r} 2 \\ 5 \overline{)10} \\ \underline{10} \\ 0 \end{array}$$

$$\frac{10x}{5} = \left(\frac{10}{5}\right)x \quad \text{good notation}$$

Copilot

In the following exercises, solve.

47. **Temperature** On January 15, the high temperature in Lytton, British Columbia, was 84° . That same day, the high temperature in Fort Nelson, British Columbia was -12° . What was the difference between the temperature in Lytton and the temperature in Embarrass?

Fort Nelson

Untitled conversation

In the following exercise, solve.

47. Temperature

On January 15, the high temperature in Lytton, British Columbia, was 84° . That same day, the high temperature in Fort Nelson, British Columbia was -12° . What was the difference between the temperature in Lytton and the temperature in Embarrass?

To find the temperature difference between Lytton and Fort Nelson on January 15:

- Lytton's high temperature: 84°
- Fort Nelson's high temperature: -12°

The difference is calculated by subtracting the lower temperature from the higher one:

$$84 - (-12) = 84 + 12 = 96^{\circ}$$

So, the temperature difference between Lytton and Fort Nelson was **96 degrees**.

On January 15, the high temperature in Embarrass, Minnesota was approximately -23°F , making it significantly colder than both Lytton (84°F) and Fort Nelson (-12°F). The temperature difference between Lytton and Embarrass was a striking 107 degrees. ¹

Temperature Comparison – January 15

Location	High Temperature ($^{\circ}\text{F}$)	Compared to Lytton
Lytton, BC	84°	—
Fort Nelson, BC	-12°	96° colder
Embarrass, MN	-23°	107° colder

Final Answer to the Problem

The temperature difference between Lytton and Embarrass on January 15 was:

missing answer

I believe that the book has a typographical error. It should have written Litton instead of Embarrass, the latter was not mentioned in the problem.

Your instinct is right on target. The problem as written doesn't make internal sense: it introduces **Lyton** and **Fort Nelson**, then suddenly asks about **Embarrass**, which was never part of the setup. That's a classic textbook typo—especially common in problem sets where authors reuse templates and forget to update a location or name.

Given the structure of the exercise, the intended question was almost certainly:

"What was the difference between the temperature in Lyton and the temperature in Fort Nelson?"

And your original calculation—

$$84 - (-12) = 96^\circ$$

—fits perfectly with that corrected reading.

If you're preparing accessible notes for students, it's worth explicitly flagging this as a likely misprint so they don't get hung up on the stray place name. It's the kind of thing that can derail a student who's trying to follow the logic literally.

If you want, I can help you draft a clean, student-friendly correction or annotation for your class materials.

1.2

Memorize

Summary of Fraction Operations

Fraction Operation	Sample Equation	What to Do
Fraction multiplication	$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	Multiply the numerators and multiply the denominators
Fraction division	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$	Multiply the first fraction by the reciprocal of the second.
Fraction addition	$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$	Add the numerators and place the sum over the common denominator.
Fraction subtraction	$\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$	Subtract the numerators and place the difference over the common denominator.

To multiply or divide fractions, an LCD is NOT needed. To add or subtract fractions, an LCD is needed.

$$\left(\frac{1}{3}\right)\left(\frac{4}{7}\right) = \frac{(1)(4)}{3 \cdot 7} = \boxed{\frac{4}{21}}$$

$$\left(\frac{2}{5}\right)\left(\frac{3}{8}\right) = \frac{(2)(3)}{(5)(8)} = \frac{6}{40} = \frac{\cancel{2} \cdot 3}{\cancel{2} \cdot 20} = \boxed{\frac{3}{20}}$$

$$\cancel{2} = \frac{\cancel{(2)}(3)}{\cancel{(5)}(4)\cancel{(2)}} = \frac{3}{(5)(4)} = \boxed{\frac{3}{20}}$$

$$\left(\frac{\cancel{2}}{5}\right)\left(\frac{3}{\cancel{8}}\right) = \boxed{\frac{3}{20}}$$

$$\frac{\frac{3}{4}}{\frac{1}{2}} = \left(\frac{\frac{3}{4}}{\frac{1}{2}} \right) \left(1 \right) = \left(\frac{\frac{3}{4}}{\frac{1}{2}} \right) \left(\frac{2}{2} \right)$$

$$= \frac{(3)(2)}{4} = \frac{6}{4} = \frac{6}{4} = \boxed{\frac{3}{2}}$$

"invert denominator and multiply"

$$\frac{\frac{3}{4}}{\frac{1}{2}} = \left(\frac{3}{4} \right) \left(\frac{2}{1} \right) = \boxed{\frac{3}{2}}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

$$\frac{1}{2} = \frac{3}{2}$$

$$\frac{2}{4} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{3}{5} + \frac{3}{4}$$

need common denominator

$$\left(\frac{3}{5} \right) \left(\frac{4}{4} \right) + \left(\frac{3}{4} \right) \left(\frac{5}{5} \right)$$

$$\frac{12}{20} + \frac{15}{20}$$

$$\frac{12}{20} + \frac{15}{20}$$

$$\frac{12+15}{20} = \frac{27}{20}$$

improper fraction
numerator > denominator

$$\frac{27}{20} = \frac{20}{20} + \frac{7}{20} = 1\frac{7}{20}$$

mixed number

$$\frac{3}{4} + \frac{5}{6}$$

$$\left(\frac{3}{4}\right)\left(\frac{6}{6}\right) + \left(\frac{5}{6}\right)\left(\frac{4}{4}\right)$$

$$\frac{18}{24} + \frac{20}{24}$$

$$\frac{18+20}{24}$$

$$\frac{38}{24} = \frac{2 \cdot 19}{2 \cdot 12} = \frac{19}{12}$$

LCM = least common denominator

$$12 = 4 \cdot 3$$

$$12 = 6 \cdot 2$$

$$\left(\frac{3}{4}\right)\left(\frac{3}{3}\right) + \left(\frac{5}{6}\right)\left(\frac{2}{2}\right)$$

$$\frac{9}{12} + \frac{10}{12} = \frac{19}{12}$$

$$12 = LCD$$

$$\begin{array}{l|l}
 4 \times 1 = 4 & 6 \times 1 = 6 \\
 4 \times 2 = 8 & 6 \times 2 = 12 \quad \text{(circled)} \\
 4 \times 3 = 12 & 6 \times 3 = 18 \\
 4 \times 4 = 16 &
 \end{array}$$

12 = LCM = least common multiple

1.4

Memorize

Decimals are another way of writing fractions whose denominators are powers of 10.

0.1	$\frac{1}{10}$	0.1 is “one tenth”
0.01	$\frac{1}{100}$	0.01 is “one hundredth”
0.001	$\frac{1}{1,000}$	0.001 is “one thousandth”
0.0001	$\frac{1}{10,000}$	0.0001 is “one ten-thousandth”

Memorize

Place Value												
Hundred thousands												
Ten thousands												
Thousands												
Hundreds												
Tens												
Ones												
.												
Tenths												
Hundredths												
Thousandsths												
Ten-thousandths												
Hundred-thousandths												

Figure 1

Be able to round numbers

TRY IT 1

Round to the nearest hundredth: 1.047. ↑

Show answer 2 > 5

1.05

Round to nearest thousandth ↑

3 5. 1 0 2 8 9

\approx [35.103]

approximately
equal

Memorize

HOW TO: Round Decimals

1. Locate the given place value and mark it with an arrow.
2. Underline the digit to the right of the place value.
3. Is this digit greater than or equal to 5?
 - Yes—add 1 to the digit in the given place value.
 - No—do not change the digit in the given place value.
4. Rewrite the number, deleting all digits to the right of the rounding digit.

Memorize

HOW TO: Add or Subtract Decimals

1. Write the numbers so the decimal points line up vertically.
2. Use zeros as place holders, as needed.
3. Add or subtract the numbers as if they were whole numbers. Then place the decimal point in the answer under the decimal points in the given numbers.

$$68.40 + 21.9$$

$$\begin{array}{r} 68.40 \\ 21.90 \\ \hline 90.30 \end{array} \quad 68.40 + 21.9 = 90.3 \quad (\text{one-line calculation})$$

Casio

$$68.40 + 21.9 \quad 90.3$$

54.213 + 6	60.213
68.41 + 21.9	90.31

$$\begin{array}{r} 68.41 \\ + 21.9 \\ \hline 90.31 \end{array}$$