04-04-25 MTH 111

- 3.3 Graphs with Intercepts-optional (but required for us)3.3 Exercise Set, page 373 (355): 10,16
- 3.4 Understand Slope of a Line-optional
- 3.4 Exercise Set, page 409 (391): 1, 3, 9, 10, 13, 19, 28
- 3.5 Use the Slope-Intercept Form of an Equation of a Line-optional
- 3.5 Exercise Set, page 451 (433): 1, 4, 7, 9, 25, 29, 37, 42, 44

5. Trigonometry

- 5.1 Use Properties of Angles, Triangles, and the Pythagorean and Theorem 5.1 Exercise Set, page 612 (594): 1, 5, 7, 9, 13, 15, 22
- 5.2 Applications: Sine, Cosine and Tangent Ratios

5.2 Exercise Set, page 640 (622): 1, 5, 7, 11, 15, 16, 19, 26 I will supply supplementary material about converting between decimal degrees and DMS notation.

6. Health Option

6.1 Measurement; Health Applications

6.1 Exercise Set, page 663 (645): 1, 3, 5, 8, 14, 17, 19

Solve for y to put the equation in slope intercept

Definition: two angles are supplementary if they add up to 180° .

Definition: an angle of $180^\circ\,$ is called a straight angle

Definition: two angle are complementary if they add up to 90°.

$$60^{\circ}$$

 30°
 $60^{\circ} + 30^{\circ} = 90^{\circ}$

EXAMPLE 2

.

Two angles are supplementary. The larger angle is 30° more than the smaller angle. Find the measure of both angles.

Let
$$\angle A$$
, $\angle B$ be the 2 and $|e|$
 $\angle A + \angle B = 180^{\circ}$
 $\angle A = \angle B + 30^{\circ}$
 $F = 180^{\circ} + \angle B = 180^{\circ}$
 $2 \angle B = 180^{\circ} - 30^{\circ}$
 $2 \angle B = 180^{\circ} - 30^{\circ}$
 $2 \angle B = 150^{\circ}$
 $\angle B = 75^{\circ}$
 $\angle A = 75^{\circ} + 30^{\circ}$

The two angles are 75 degrees and 105 degrees.

Memorize

Sum of the Measures of the Angles of a Triangle

For any ΔABC , the sum of the measures of the angles is 180°. $m \angle A + m \angle B + m \angle C = 180^\circ$

MTH 111-001N Page 2

Memorize

Definition: a right triangle is a triangle containing a right angle, which is 90°.

Inpusible triangle

EXAMPLE 4

One angle of a right triangle measures 28° . What is the measure of the third angle?

Let
$$\chi = 3vd$$
 ansle
 $2y^{\circ}$
 $\chi + 2y^{\circ} = 90^{\circ}$
 $\chi = 90^{\circ} - 2y^{\circ}$
 $\chi = 62^{\circ}$
The 3vd ansle '1 62°

 ΔABC and ΔXYZ are similar triangles. Their corresponding sides have the same ratio and the corresponding angles have the same measure.

Triangle ABC is similar to triangle XYZ is written $\bigtriangleup A \clubsuit C \sim \bigtriangleup XY \clubsuit$

Memorize The Pythagorean Theorem In any right triangle ΔABC , $a^2 + b^2 = c^2$

Converse: If in a $\triangle ABC$, with sides a, b, c, if $a^2 + b^2 = c^2$, then $\triangle ABC$ is a right triangle.

Three Basic Trigonometric Ratios

• sine $\theta = \frac{\text{the length of the opposite side}}{\text{the length of the hypotenuse side}} = \frac{\theta \rho \rho}{b r \rho}$	
• cosine $\theta = \frac{\text{the length of the adjacent side}}{\text{the length of the hypotenuse side}} = adj$	
• tangent $\theta = \frac{\text{the length of the opposite side}}{\text{the length of the adjacent side}} = 0 \text{ pP}.$	- sin A
Where θ is the measure of a reference angle measured in degrees.	(no t

• $\sin \theta = \frac{\text{opp}}{\text{hyp}}$ • $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ • $\tan \theta = \frac{\text{opp}}{\text{adj}}$

Some people remember the definition of the trigonometric ratios as SOH CAH TOA.

Scientific

0.70710678118654752440084436210485

MTH 111-001N Page 5

$$(02 + 5^{\circ} = \frac{1}{52} \approx 0.707$$

$$\begin{aligned} \angle z = 90^{\circ} - 35^{\circ} \\ \angle z = 55^{\circ} \\ \angle z = 55^{\circ} \\ S_{1n} = 35^{\circ} = \frac{0}{h}p - \frac{y}{14} \\ H = 14 \sin 35^{\circ} \approx 8.03 \\ 14*\sin(35) \\ 8.030070109 \end{aligned}$$

8.030070109

2 + 1 = 14 $z^{2} \approx 14^{2} - 8.03^{2}$ $z \approx \sqrt{14^{2} - 8.05^{2}} \approx 11.47$

$$\sqrt{\frac{14^{2}-8.03^{2}}{11.46817771}}}$$

$$\cos 35^{\circ} = \frac{a d_{0}}{h / p} = \frac{2}{14}$$

$$\frac{14^{2}}{h / p} = \frac{14}{14}$$

$$\frac{14^{*}\cos(35)}{11.46812862}$$

MTH 111-001N Page 7

Memorize

Solving a triangle means : given some sides and angles of a triangle, find the missing sides and angles.

Imperial System of Measurement

	3 teaspoons (t) = 1 tablespoon (T)	
1 foot(ft) = 12 inches(in)	16 tablespoons (T) = 1 cup (C)	
$\sum_{i=1}^{n} 11000 (10.) = 12 \text{ monos} (11.)$	$1 \operatorname{oup}(C) = \operatorname{Q}\operatorname{fluid}\operatorname{oup}\operatorname{cos}(\operatorname{fluid})$	

Length	$\int 1 \text{ foot (ft.)} = 12 \text{ inches (in.)}$ $\int 1 \text{ yard (yd.)} = 3 \text{ feet (ft.)}$ $1 \text{ mile (mi.)} = 5,280 \text{ feet (ft.)}$	Volume	3 teaspoons (t) 16 tablespoons (T) 1 cup (C) 1 pint (pt.) 1 quart (qt.) 1 gallon (gal)	1 tablespoon (T) 1 cup (C) 8 fluid ounces (fl. oz.) 2 cups (C) 2 pints (pt.) 4 quarts (qt.)
Weight	1 pound (lb.) = 16 ounces (oz.) $1 ton = 2000 pounds (lb.)$	Time	$\int 1 \text{ minute (min)} \\ \int 1 \text{ hour (hr)} \\ \int 1 \text{ day} \\ 1 \text{ week (wk)} \\ \int 1 \text{ year (yr)} $	60 seconds (sec) 60 minutes (min) 24 hours (hr) 7 days 365 days

memorite J

	Length	Mass				
J	1 kilometre (km) = 1,000 m	1 kilogram (kg) = 1,000 g	1 kilolitre (kL) = 1,000 L			
	1 hectometre (hm) = 100 m	1 hectogram (hg) = 100 g	1 hectolitre (hL) = 100 L			
	1 dekametre (dam) = 10 m	1 dekagram (dag) = 10 g	1 dekalitre (daL) = 10 L			
Ĵ	1 metre (m) = 1 m	1 gram (g) = 1 g	1 litre (L) = 1 L			
	1 decimetre (dm) = 0.1 m	1 decigram (dg) = 0.1 g	1 decilitre (dL) = 0.1 L			
J	1 centimetre (cm) = 0.01 m	1 centigram (cg) = 0.01 g	1 centilitre (cL) = 0.01 L			
J	1 millimetre (mm) = 0.001 m	1 milligram (mg) = 0.001 g	1 millilitre (mL) = 0.001 L			
		1 microgram (mcg) = 0.000001 g				
J	1 metre = 100 centimetres	1 gram = 100 centigrams	1 litre = 100 centilitre s			
J	1 metre = 1,000 millimetres	1 gram = 1,000 milligrams	1 litre = 1,000 millilitre s			

Metric System of Measurement

Conversion Factors Between Imperial and Metric Systems

Length		Mass			Capacity		
1 in. =	$2.54 \mathrm{~cm}$						
1 ft. =	$0.305~\mathrm{m}$	1 lb.	=	$0.45 \mathrm{~kg}$	1 qt.	=	$0.95 \ L$
1 yd. =	$0.914~\mathrm{m}$	1 oz.	=	$28 \mathrm{~g}$	1 fl. oz.	=	30 mL
1 mi. =	$1.61 \mathrm{~km}$	1 kg	=	2.2 lb.	1 L	=	1.06 qt.
1 m =	3.28 ft.						

2. Let
$$y = -6x + 12$$
.

Find the slope and y-intercept of the line.

This equation is already in slope-intercept form y = mx+b, with m = slope and b = y-intercept.

Thus, slope = -6 and y-intercept = 12, or the point (0,12).

