- 1.6 Roots and Radicals
 - 1.6 Exercise Set, page 163 (145): 1, 3, 12, 14, 15, 17,19
- 2. Solving Linear Equations and Inequalities
- 2.1 Linear Equations
 - 2.1 Exercise Set, page 204 (186): 1, 3, 6, 13, 15, 19, 20, 21, 33, 37, 50
- 2.2 Use a General Strategy to Solve Linear Equations
 - 2.2 Exercise Set, page 221 (203): 1, 8, 15, 27, 30, 32, 34, 40

Exam 1		stem & leaf		
73.1875	mean			A-0
75	median	8	3334589	B-7
12.91423	st. dev	7	337	C-3
45	min	6	89	D-2
89	max	5	489	F- 4
16	count	4	5	

1.6

In the following exercises, simplify.

2. a. $\sqrt{196} = 14$ b. $-\sqrt{1} = -1$ 196

298

298

196 = 2². 9²

= (2.9)² = 14²

$$\begin{array}{ccc} (x + y) & 5 & 17 \\ .: & 196 & 5 & 14 \\ c. & \sqrt[5]{-32} & = & -2 \end{array}$$

In the following exercises, estimate each root between two consecutive whole numbers.

b.
$$\sqrt[3]{71}$$
 $3^3 = 27 < 71$
 $10^3 = 1000 > 71$
 $4^3 = 64 < 71$
 $5^3 = 125 > 71$
 $4 < 371 < 5$

71^(1/3)=4.1408

In the following exercises, approximate each root and round to two decimal places.

a.
$$\sqrt{19}$$

b.
$$\sqrt[3]{89}$$

c.
$$\sqrt[4]{97}$$

a.
$$\sqrt{53}$$

b.
$$\sqrt[3]{147}$$

c.
$$\sqrt[4]{452}$$

97 ^ (1 ÷ 4) = 3.13828899271499608045577212 7287

2.1

Learning Objectives

By the end of this section it is expected that you will be able to:

- Verify a solution of an equation
- · Solve equations using the Subtraction and Addition Properties of Equality
- · Solve equations using the Division and Multiplication Properties of Equality
- Solve an equation with variables and constants on both sides

If
$$x = 2$$
 a solution of $x^3 - 4x^2 + 3x = 0$?

 $x = 2 - (4)(x^2) + (3)(x) \stackrel{?}{=} 0$
 $x = 16 + 6 \stackrel{?}{=} 0$
 $x = 2 = 10$
 $x = 2 = 10$

Memorize

Solution of an equation

A **solution of an equation** is a value of a variable that makes a true statement when substituted into the equation.

Memorize

Linear Equation

A **linear equation** is a first degree equation in one variable that can be written as: ax + b = 0, where a and b are real numbers and $a \neq 0$,

Memorize

Properties of Equality

Subtraction Property of Equality For any real numbers a, b, and c,

if a = b, then a-c = b-c.

Division Property of Equality

For any numbers a, b, and c, and $c \neq 0$,

if a = b, then $\frac{a}{c} = \frac{b}{c}$. Addition Property of Equality

For any real numbers a, b, and c,

if a = b, then a+c = b+c.

Multiplication Property of Equality For any numbers a, b, and c,

if a = b, then ac = bc.

When you add, subtract, multiply, or divide the same quantity from both sides of an equation, you still have equality.

2.1

In the following exercises, solve each equation using the Subtraction and Addition Properties of Equality. A 110, the classical and x = x + y = x +

9.
$$x - \frac{1}{3} = 2$$

$$x - \frac{1}{3} + \frac{1}{3} = 2 + \frac{1}{3}$$

$$2 + (-\frac{1}{3} + \frac{1}{3}) = 2 + \frac{1}{3}$$

$$2 + (-\frac{1}{3} + \frac{1}{3}) = (2)(\frac{3}{3}) + \frac{1}{3}$$

$$2 + 0 = \frac{6+1}{3}$$

$$2 + 0 = \frac{7}{3} = 2$$

$$2 + \frac{7}{3} =$$

In the following exercises, solve each equation using the Division and Multiplication Properties of Equality and check the solution.

30.
$$-\frac{7}{10}x = -\frac{14}{3}$$

$$(-1)\left(-\frac{2\alpha}{10}\right) = (-1)\left(-\frac{14}{3}\right)$$

$$(-1)\left(-\frac{2\alpha}{3}\right) = (-1)\left(-\frac{2\alpha}{3}\right)$$

$$(-$$

In the following exercises, solve the following equations with constants on both sides.

38.
$$6x - 17 = 5x + 2$$

$$6x - 5x - 17 = 5x - 5x + 2$$

$$x - 17 = 2$$

$$x = 19$$

50.
$$6.6x - 18.9 = 3.4x + 54.7$$

round answer to nearest tenth

round answer to nearest tenth

2.2

Textbook typo

EXAMPLE 2

Solve:
$$(y + 9) = 8$$
.

EXAMPLE 3

Solve:
$$5(a-3) + 5 = -10$$
.

Solve:
$$5(a-3)+5=-10$$
.

$$5a-15+5=-10$$

$$5a-10=-10$$

$$5a-20$$

$$5a-20$$

$$5a-3+1=-2$$

$$a-2=-2$$

$$check$$

$$5(-3)+5=-10$$

$$5(-3)+5=-10$$

$$-15+5=-10$$

$$-10=-10$$
Memorize

Conditional equation

An equation that is true for one or more values of the variable and false for all other values of the variable is a conditional equation.

Identity

An equation that is true for any value of the variable is called an **identity**.

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2}x$$

$$\frac{1}{2} = \frac{1}{2}x$$

$$\frac{1}{2} = \frac{1}{2}x$$

An equation that is false for all values of the variable is called a contradiction. A contradiction has no solution.

Your Name MTH 111 quiz 2 Write each problem.

1. Simplify and write in scientific notation, rounded

to a single digit.

answer axID hot required

(346)(0.7)

$$\frac{(346)(0.7)}{40}$$

not required

2. Solve and check.

and check.

$$7x - \frac{1}{3} = 2$$

$$7x = 2 + \frac{1}{3}$$

$$7x = 2\left(\frac{3}{5}\right) + \frac{1}{3}$$

$$7x = 3$$

$$7x$$

3. Estimate

Such that
$$N < \sqrt{200} < N + 1$$
.

$$11^{2} = 121 < 200$$

$$13^{2} = 169 < 200$$

$$14^{2} = 196 < 200$$

$$15^{2} = 215 > 200$$

14 < 5200 < 15(a) inlator check; Sqrt(200)=14.14213562373095