5.1 Use Properties of Angles, Triangles, and the Pythagorean and Theorem

5.1 Exercise Set, page 612 (594): 1, 5, 7, 9, 13, 15, 22

5.2 Applications: Sine, Cosine and Tangent Ratios

5.2 Exercise Set, page 640 (622): 1, 5, 7, 11, 15, 16, 19, 26

I will supply supplementary material about converting between decimal degrees and DMS notation.

6. Health Option

6.1 Measurement; Health Applications

6.1 Exercise Set, page 663 (645): 1, 3, 5, 8, 14, 17, 19,

6.2 Ratio, rate, and percent; Health Applications

6.2 Exercise Set, page 680 (662): 1, 6, 10, 11, 18, 20, 21 I will provide supplementary material about computing values in direct, indirect, and inverse variation.

Exam 2		stem & leaf		
66.3	mean			A-2
18.3334 6	st.dev	9	48	B - 2
68	median	8	25	C - 5
28	min	7	44889	D -4
98	max	6	0279	F -7
20	count	5	077	
		4	89	
		3	7	
		2	8	

Exam 1		stem & leaf		
78	mean	10	0	A-4
13.52969	st.dev	9	357	B - 7
80.5	median	8	0113679	C - 3
55	min	7	135	D -4
100	max	6	2356	F -2
20	count	5	58	

(onve Grade Qni7 Kzam 1 Ezan 2 rf fmal 2 15/15, 20% 20% 20% I.f fmal 2 151, F. Final > lower/E,,E)

20%

20% high

Kinal

5,h (90°) = DMS = degree - minute - second

$$= \frac{70^{\circ} + 30^{\circ} + 20^{\circ}}{20^{\circ} + 30^{\circ} + 30^{\circ} + 20^{\circ} + 20^{\circ}$$

111-001N Page

70,5556

 $= \left(\frac{1}{60}\right) \left(\frac{1}{60}\right)^{6}$

Gemini

Analysis
Based on the image, the request is to convert $70^{\circ}30'20''$ to Decimal Degrees (DD).
The conversion results in $70.50555...^{\circ}$.

Solution Conversion Steps

To convert from **Degrees-Minutes-Seconds (DMS)** to **Decimal Degrees (DD)**, you use the following formula:

$$ext{DD} = ext{Degrees} + \left(rac{ ext{Minutes}}{60}
ight) + \left(rac{ ext{Seconds}}{3600}
ight)$$

1. Identify the Components

From the given value $70^{\circ}30'20''$:

• **Degrees:** 70

• **Minutes:** 30

• **Seconds:** 20

2. Apply the Formula

Substitute the values into the formula:

$${
m DD} = 70 + \left(rac{30}{60}
ight) + \left(rac{20}{3600}
ight)$$

3. Calculate the Decimal Equivalents

• Minutes to Decimal: $\frac{30}{60}=0.5$

• Seconds to Decimal: $rac{20}{3600}pprox 0.005555...$

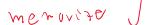
4. Sum the Components

$$DD = 70 + 0.5 + 0.005555...$$

$$DD = 70.505555...$$

Final Answer

The value $70^{\circ}30'20''$ converted to Decimal Degrees is 70.5056° (rounded to four decimal places).


Would you like to **convert another coordinate value** from DMS to DD, or perform the **reverse conversion** from DD to DMS?

6.1

Opilot Search

What was the cost of the Orbiter?

The Mars Climate Orbiter cost approximately \$125 million to build and launch. This included development, construction, and mission operations. Unfortunately, the entire investment was lost due to a unit conversion error between metric and imperial systems.

merovite J

Imperial System of Measurement

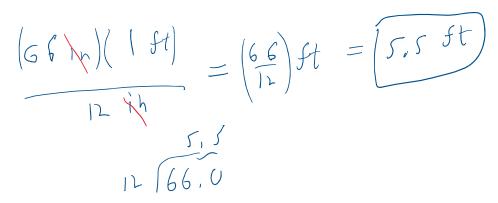
Length	1 foot (ft.) = 12 inches (in.) 1 yard (yd.) = 3 feet (ft.) 1 mile (mi.) = 5, 280 feet (ft.)	Volume	3 teaspoons (t) = 1 tablespoon (T) 16 tablespoons (T) = 1 cup (C) 1 cup (C) = 8 fluid ounces (fl. oz.) 1 pint (pt.) = 2 cups (C) 1 quart (qt.) = 2 pints (pt.) 1 gallon (gal) = 4 quarts (qt.)
Weight	1 pound (lb.) = 16 ounces (oz.) 1 ton = 2000 pounds (lb.)	Time	$ \int 1 \text{ minute (min)} = 60 \text{ seconds (sec)} $ $ \int 1 \text{ hour (hr)} = 60 \text{ minutes (min)} $ $ \int 1 \text{ day} = 24 \text{ hours (hr)} $ $ \int 1 \text{ week (wk)} = 7 \text{ days} $ $ \int 1 \text{ year (yr)} = 365 \text{ days} $

Memorize

Identity Property of Multiplication

For any real number *a*:

$$a \cdot 1 = a$$


$$1 \cdot a = a$$

1 is the **multiplicative identity**.

Convert 66 inches to feet

The first form works since 66 inches • 1 foot 12 inches

The inches divide out and leave only feet. The second form does not have any units that will divide out and so will not help us.

Metric System of Measurement

Length	Mass	Capacity (VUMMe)		
1 kilometre (km) = 1,000 m	1 kilogram (kg) = 1,000 g	1 kilolitre (kL) = 1,000 L $\sqrt{}$		
1 hectometre (hm) = 100 m	1 hectogram (hg) = 100 g	1 hectolitre (hL) = 100 L		
1 dekametre (dam) = 10 m	1 dekagram (dag) = 10 g	1 dekalitre (daL) = 10 L		
1 metre (m) = 1 m	1 gram (g) = 1 g	1 litre (L) = 1 L		
1 decimetre (dm) = 0.1 m	1 decigram (dg) = 0.1 g	1 decilitre (dL) = 0.1 L		
1 centimetre (cm) = 0.01 m	1 centigram (cg) = 0.01 g	1 centilitre (cL) = 0.01 L		
1 millimetre (mm) = 0.001 m	1 milligram (mg) = 0.001 g	1 millilitre (mL) = 0.001 L		
	1 microgram (mcg) = 0.000001 g			
1 metre = 100 centimetres	1 gram = 100 centigrams	1 litre = 100 centilitre s		
1 metre = 1,000 millimetres	1 gram = 1,000 milligrams	1 litre = 1,000 millilitre s		

Memorize centi =
$$\frac{1}{100}$$

milli = $\frac{1}{1000}$

In physics weight depends on gravity, but mass is intrinsic to an object.

EXAMPLE 5

Eleanor's newborn baby weighed 3,200 grams. How many kilograms did the baby weigh?

Solution

We will convert grams into kilograms.

	3,200 grams
Multiply the measurement to be converted by 1.	3,200 grams • 1
Write 1 as a function relating kilograms and grams.	3,200 grams • 1 kg 1,000 grams
Simplify.	3,200 grams • 1 kg 1,000 grams
Multiply.	$\frac{3,200 \text{ kilograms}}{1,000}$
Divide.	3.2 kilograms The baby weighed 3.2 kilograms.

1 kg = 1000 g 7 1 kg = 1

supplied

Conversion Factors Between Imperial and Metric Systems

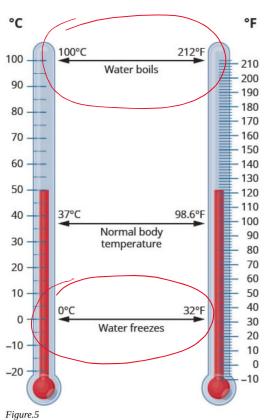
Length			Mass			Capacity		
1 in.	=	2.54 cm => 2.54 cm =1						
1 ft.	=	0.305 m	1 lb.	=	$0.45~\mathrm{kg}$	1 qt.	=	$0.95~\mathrm{L}$
1 yd.	=	$0.914 \mathrm{m}$	l .		0	1 fl. oz.		
1 mi.	=	$1.61~\mathrm{km}$	1 kg	=	2.2 lb.	1 L	=	1.06 qt.
1 m	=	3.28 ft.						

Convert 7.4 inches to centimeters. Round answer to

7.4*2.54=18.796

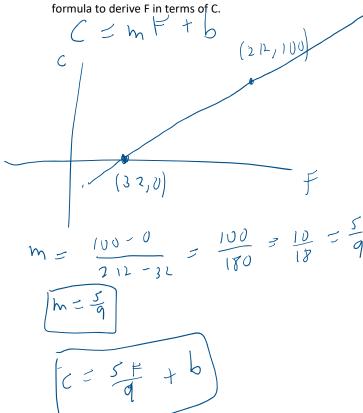
Supplied

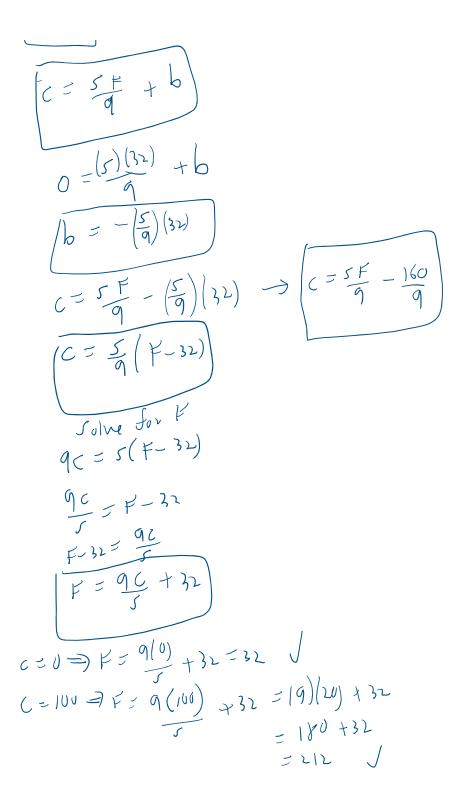
Temperature Conversion


To convert from Fahrenheit temperature, F, to Celsius temperature, C, use the formula

$$C = \frac{5}{9} (F - 32).$$

To convert from Celsius temperature, C, to Fahrenheit temperature, F, use the formula


$$F = \frac{9}{5}C + 32.$$



Quiz 4
Assume that C is a linear function of F.

Derive the formula for C in terms of F. Use this

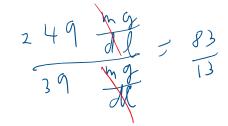
6.2 Memorize

Definition: a ratio is the comparison of two numbers or quantities by division

Notation: The ratio of a to $b = \frac{a}{b} = a : b$

EXAMPLE 2

Hector's total cholesterol is $249~\mathrm{mg/dl}$ and his HDL cholesterol is $39~\mathrm{mg/dl}$. a) Find the ratio of his total


cholesterol to his HDL cholesterol. b) Assuming that a ratio less than 5 to 1 is considered good, what would you suggest to Hector?

Solution

a) First, write the words that express the ratio. We want to know the ratio of Hector's total cholesterol to his HDL cholesterol.

Write as a fraction.	total cholesterol HDL cholesterol
Substitute the values.	$\frac{249}{39}$
Simplify.	$\frac{83}{13}$

b) Is Hector's cholesterol ratio ok? If we divide 83 by 13 we obtain approximately 6.4, so $\frac{83}{13} \approx \frac{6.4}{1}$. Hector's cholesterol ratio is high! Hector should either lower his total cholesterol or raise his HDL cholesterol.

Memorize

Unit Rate

A unit rate is a rate with denominator of 1 unit.

Percent

A percent is a ratio whose denominator is 1()().

memorise $\% = \frac{1}{100} = 6.01$

convert 25 to a percent

$$\frac{25}{100} = 25(\frac{1}{100}) = 25(\frac{0}{100})$$

cunvert 36% to a fraction or a decimal

$$36\% = 36\left(\frac{1}{100}\right) = \frac{36}{100} = \frac{18}{50} = \frac{18}{25}$$
 $36\% = 36(0.01) = (0.36)$

What is 10 percent of 90?

 $\chi = (10\%) \cdot 90$ x = (10)(100)(90) = (10)(100)(90) $\chi = 9$ [10] (90) $\chi = 9$

12 = (x %). 6 12 = (x %). 6 12 = x(100). 6 12 = x(100). 6 2 = x(100). 6 2 = x(100). 6 12 | 12 | 100 % of 6