- 1. Operations with Real Numbers
- 1.1 Algebraic Expressions
  - 1.1 Exercise Set, page 40 (22): 1, 3, 5, 7, 9, 10, 12, 22, 27
- 1.2 Integers
  - 1.2 Exercise Set, page 69 (51): 1, 2, 6, 18, 25, 32, 39, 40, 48
- 1.4 Decimals
  - 1.4 Exercise Set, page 112 (94): 1, 2, 4, 5, 9, 10, 18, 19, 25, 31, 33, 42, 44

1.2

### Memorize

#### Absolute Value

The absolute value of a number is its distance from 0 on the number line.

The absolute value of a number n is written as |n|.

Geometric definition

$$|3| = 3$$

$$|3| = 3$$

$$|5| = 5$$

$$|0| = 0$$

$$|3| = 8$$

$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

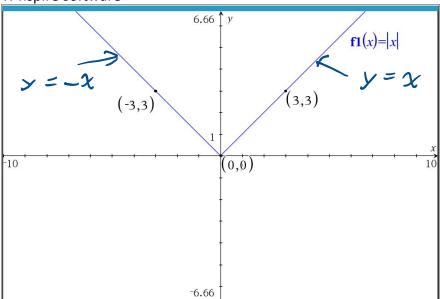
$$|x| = (x \text{ if } x > 0)$$

$$|x| = (x \text{ if } x > 0)$$

$$|3| = 3$$
  
 $-5 < 0 \implies \text{use bottom formula}$   
 $|-5| = -(-5) = 5$ 

Windows scientific calculator

\_


# Memorize

# Property of Absolute Value

 $|n| \ge 0$  for all numbers

Absolute values are always greater than or equal to zero!

# TI-nspire software



# Copilot

The TI-30XIIS calculator doesn't have a dedicated absolute value (x) button, but you can still calculate it manually with a simple workaround:

### Manual Method for Absolute Value

- 1. **Enter the number**: Type in the value of x.
- 2. Check the sign:
  - If x is positive, the absolute value is just x.
  - If x is negative, press the (-) key (located near the bottom left) to negate it.
- 3. **Use parentheses if needed**: For expressions like -5 + 3, calculate the expression first, then apply the absolute value logic.
- 4. Final step: If the result is negative, just re-enter it as positive manually.

This method works because absolute value is defined as the distance from zero—always positive.

### Memorize

# **Grouping Symbols**

| Parentheses    |        | () |
|----------------|--------|----|
| Brackets       | Square | [] |
| Braces         | curly  | {} |
| Absolute value |        |    |

### memorize

### **Subtraction Property**

$$a - b = a + (-b)$$

Subtracting a number is the same as adding its opposite.

# Memorize

### Multiplication of Signed Numbers

For multiplication of two signed numbers:

| Same signs    | Product  | Example          |
|---------------|----------|------------------|
| Two positives | Positive | $7 \cdot 4 = 28$ |
| Two negatives | Positive | -8(-6) = 48      |

| Different signs                                    | Product              | Example                                                                     |
|----------------------------------------------------|----------------------|-----------------------------------------------------------------------------|
| Positive \cdot negative<br>Negative \cdot positive | Negative<br>Negative | $ \begin{array}{rcl} 7(-9) & = & -63 \\ -5 \cdot 10 & = & -50 \end{array} $ |

### Memorize

# Multiplication by -1

$$-1a = -a$$

Multiplying a number by -1 gives its opposite.

### Multiplication and Division of Signed Numbers

For multiplication and division of two signed numbers:

- If the signs are the same, the result is positive.
- If the signs are different, the result is negative.

| Same signs    | Result   |
|---------------|----------|
| Two positives | Positive |
| Two negatives | Positive |

If the signs are the same, the result is positive.

| Different signs       | Result   |
|-----------------------|----------|
| Positive and negative | Negative |
| Negative and positive | Negative |

If the signs are different, the result is negative.

### 1.3

# **Summary of Fraction Operations**

| Fraction Operation      | Sample Equation                                                | What to Do                                                                    |
|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|
| Fraction multiplication | $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$                | Multiply the numerators and multiply the denominators                         |
| Fraction division       | $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ | Multiply the first fraction by the reciprocal of the second.                  |
| Fraction addition       | $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$                    | Add the numerators and place the sum over the common denominator.             |
| Fraction subtraction    | $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$                    | Subtract the numerators and place the difference over the common denominator. |

To multiply or divide fractions, an LCD is NOT needed. To add or subtract fractions, an LCD is needed.

## Learning Objectives

By the end of this section it is expected that you will be able to:

- · Round decimals
- · Add and subtract decimals
- · Multiply and divide decimals
- · Convert decimals, fractions, and percent

### Memorize

**Decimals** are another way of writing fractions whose denominators are powers of 10.

| 0.1    | = | $\frac{1}{10}$     | 0.1 is "one tenth"             |
|--------|---|--------------------|--------------------------------|
| 0.01   | = | $\frac{1}{100}$    | 0.01 is "one hundredth"        |
| 0.001  | = | $\frac{1}{1,000}$  | 0.001 is "one thousandth"      |
| 0.0001 | = | $\frac{1}{10,000}$ | 0.0001 is "one ten-thousandth" |

### Memorize

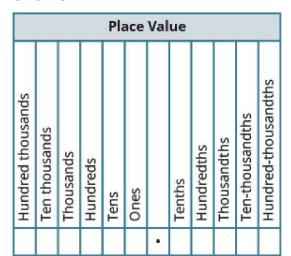



Figure 1

### **HOW TO: Round Decimals**

- 1. Locate the given place value and mark it with an arrow.
- 2. Underline the digit to the right of the place value.
- 3. Is this digit greater than or equal to 5?
  - Yes—add 1 to the digit in the given place value.
  - No—do not change the digit in the given place value.
- 4. Rewrite the number, deleting all digits to the right of the rounding digit.

#### HOW TO: Add or Subtract Decimals

- 1. Write the numbers so the decimal points line up vertically.
- 2. Use zeros as place holders, as needed.
- 3. Add or subtract the numbers as if they were whole numbers. Then place the decimal point in the answer under the decimal points in the given numbers.

317.001 + 21.46 = 338.461

#### HOW TO: Multiply Decimals

- 1. Determine the sign of the product.
- 2. Write in vertical format, lining up the numbers on the right. Multiply the numbers as if they were whole numbers, temporarily ignoring the decimal points.
- 3. Place the decimal point. The number of decimal places in the product is the sum of the number of decimal places in the factors.
- 4. Write the product with the appropriate sign.



### **HOW TO: Divide Decimals**

- 1. Determine the sign of the quotient.
- 2. Make the divisor a whole number by "moving" the decimal point all the way to the right. "Move" the decimal point in the dividend the same number of places—adding zeros as needed.
- 3. Divide. Place the decimal point in the quotient above the decimal point in the dividend.
- 4. Write the quotient with the appropriate sign.

### Memorize

### Repeating Decimal

A **repeating decimal** is a decimal in which the last digit or group of digits repeats endlessly.

What is  $0.\overline{9}$  equal to?

claim 0.9 = 1

Let 
$$x = 0.9 = 0.999$$
 $10x = 10(0.999)$ 
 $10x = 9.999$ 
 $-x = 0.999$ 
 $x = 9$ 
 $x = 9$ 
 $x = 9$ 
 $x = 9$ 
 $x = 9$ 

Your Name MTH 111 quiz 1 write each problem. No calculator.

1. Is 9x-4 an expression or equation?

This is an expression, because there is no equal sign.

2. Can we solve 9x-4 for x? Why or why not?

No. We cannot solve for x because we don't have an equation. Furthermore, an expression does not have a truth value.

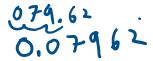
3. Give the integers in this list:

$$3, -5, 1/2, 0, -3/4, 9.04$$

4. Add 36.78+54.1

36.78+54.1=90.88 one-note check

5. Multiply  $23.01 \times (-3.6)$ 


6. Round 82.03 to the nearest ten.



7. Multiply  $79.62 \times 1000$ 



8. Divide  $79.62 \div 1000$ 

