

1.4 Subtracting Whole Numbers

1.4 Exercise Set, page 34: 3, 15, 45, 54

1.5 Rounding and Estimating

1.5 Exercise Set, page 44: 1, 11, 30, 37, 43, 47, 50, 54

1.6 Multiplying Whole Numbers and Area

1.6 Exercise Set, page 56: 1, 3, 9, 13, 39, 57, 77

1.7 Dividing Whole Numbers

1.7 Exercise Set, page 71: 1, 7, 13, 21, 24, 25, 43, 75

Your Name MDE 10 quiz 1 write each problem
Open Homework Notebook, closed everything else,
no calculator

1.4: 3

Objective A Subtract. Check by adding. See Examples 1 and 2.

$$\begin{array}{r} 389 \\ -124 \\ \hline 265 \end{array}$$

check

$$\begin{array}{r} 265 \\ +124 \\ \hline 389 \end{array}$$

1.5: 1

Objective A Round each whole number to the given place. See Examples 1 through 3.

1. 423 to the nearest ten

$$423 \approx \boxed{420}$$

Multiplication Shown as Repeated Addition Suppose that we wish to count the number of laptops provided in a computer class. The laptops are arranged in 5 rows, and each row has 6 laptops.

number of laptops provided in a computer class. The laptops are arranged in 5 rows, and each row has 6 laptops.

$$\begin{aligned}
 \# \text{ laptops} &= \left(\frac{\# \text{ laptops}}{\text{row}} \right) \left(\frac{\# \text{ rows}}{\text{class}} \right) \\
 &= \left(\frac{6 \text{ laptops}}{\text{row}} \right) \left(\frac{5 \text{ rows}}{\text{class}} \right) \\
 &= \boxed{30 \frac{\text{laptops}}{\text{class}}}
 \end{aligned}$$

There are 30 laptops in the class.

Memorize

Multiplication Property of 0

The product of 0 and any number is 0. For example,

$$5 \cdot 0 = 0 \quad \text{and} \quad 0 \cdot 8 = 0$$

Trick question

without calculator evaluate

$$\begin{aligned}
 &\left(\frac{3+1-4+100}{2+8-100} \right) (0) \left(\frac{100^2 - 50}{30+1} \right) \\
 &= 0
 \end{aligned}$$

memorize

Multiplication Property of 1

The product of 1 and any number is that same number. For example,

$$1 \cdot 9 = 9 \quad \text{and} \quad 6 \cdot 1 = 6$$

Memorize

Commutative Property of Multiplication

Changing the **order** of two factors does not change their product. For example,

$$9 \cdot 2 = 18 \quad \text{and} \quad 2 \cdot 9 = 18$$

Memorize

Associative Property of Multiplication

Changing the **grouping** of factors does not change their product. From the previous page, we know that for example,

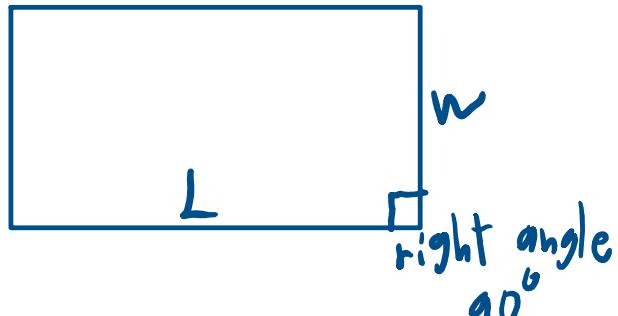
$$(2 \cdot 3) \cdot 4 = 2 \cdot (3 \cdot 4)$$

$$\begin{array}{r} 6 \cdot 4 \mid 2(12) \\ 24 = 24 \end{array}$$

Memorize

Distributive Property

Multiplication distributes over addition. For example,


$$2(3 + 4) = 2 \cdot 3 + 2 \cdot 4$$

$$\begin{array}{r} (2)(7) \mid 6 + 8 \\ 14 = 14 \end{array}$$

$$\begin{array}{r} \overline{2(3-3)} = (2)(3) + (2)(-3) \\ 2(0) \mid 6 - 6 \\ 0 \quad 0 \end{array}$$

Memorize

Area of a rectangle = length \cdot width

Let A = area of rectangle

$$L = \text{length} \quad w = \text{width}$$

$$A = Lw$$

1.6

$$\begin{array}{r} \text{quotient} \\ \swarrow 25 \\ 3 \overline{) 75} \\ \uparrow \text{divisor} \end{array} \quad \leftarrow \text{dividend}$$

$$\begin{array}{r} \text{quotient} \\ \downarrow \\ 75 \div 3 = 25 \\ \uparrow \text{dividend} \quad \uparrow \text{divisor} \end{array}$$

$$\begin{array}{r} \text{dividend} \\ \downarrow \\ \frac{75}{3} = 25 \quad \leftarrow \text{quotient} \\ \uparrow \text{divisor} \end{array}$$

$$\begin{array}{r} \text{dividend} \quad \text{quotient} \\ \downarrow \quad \downarrow \\ 75/3 = 25 \\ \uparrow \text{divisor} \end{array}$$

Memorize

Division Properties of 1

The quotient of any number (except 0) and that same number is 1. For example,

$$8 \div 8 = 1 \quad \frac{5}{5} = 1 \quad 4 \overline{)4}$$

The quotient of any number and 1 is that same number. For example,

$$9 \div 1 = 9 \quad \frac{6}{1} = 6 \quad 1 \overline{)3} \quad \frac{0}{1} = 0$$

Memorize

Division Properties of 0

The quotient of 0 and any number (except 0) is 0. For example,

$$0 \div 9 = 0 \quad \frac{0}{5} = 0 \quad 14 \overline{)0}$$

The quotient of any number and 0 is not a number. We say that

$$\frac{3}{0}, \quad 0 \overline{)3}, \quad \text{and} \quad 3 \div 0$$

are **undefined**.

Why can't we divide by zero?

Assume that we can divide by 0.

$$\frac{1}{0} = x \quad \text{for some number } x$$

$$\Leftrightarrow 1 = 0 \cdot x$$

$$\Leftrightarrow \text{equivalently} \quad 1 = 0$$

$$\Rightarrow 1 + 1 = 0 + 1$$

$$2 = 1$$

$$3 = 2$$

$$4 = 3$$

⋮

$$\begin{array}{r} 4 \cdots \\ \vdots \\ 1,000,000 \geq 0 \end{array}$$

Memorize

$$\text{whole number part} \cdot \text{divisor} + \text{remainder part} = \text{dividend}$$

quotient too small

$$5 \overline{)418} \quad \begin{array}{r} 83 \\ 40 \\ \hline 18 \\ 15 \\ \hline 3 \end{array}$$

6 > 5

remainder too big

$$83 \cdot 5 + 3 = 418$$

$$415 \\ + 3 \\ \hline 418$$

$$418 \div 5 = 83 \frac{3}{5}$$

check $5 \left(83 \frac{3}{5} \right)$

$$= 5 \left(83 + \frac{3}{5} \right)$$

$$= 5(83) + 5\left(\frac{3}{5}\right)$$

$$= 415 + 3$$

$$\begin{aligned}
 &= 415 + 3 \\
 &= 418 \text{ J}
 \end{aligned}$$

Memorize

$$\text{average} = \frac{\text{sum of numbers}}{\text{number of numbers}} \quad \text{Arithmetic mean}$$

Find average of 1, 2, 3, 6

$$\begin{aligned}
 &\frac{1+2+3+6}{4} \\
 &= \frac{12}{4} = 3
 \end{aligned}$$